
Supplementary Material

In this section, we further include more results and analy-
sis to complement the main paper. We provide additional
details on the following topics:
• Architectural Details (Sec. 7)
• Ablations (Sec. 8)
• Qualitative Results (Sec. 9)
• Discussion (Sec. 10)
• Limitations (Sec. 11)

7. Architectural Details
We develop three variants of our GroupMamba back-
bones, each tailored to different performance and efficiency
requirements: GroupMamba-T (Tiny), GroupMamba-S
(Small), and GroupMamba-B (Base), with 23M, 34M, and
57M parameters, respectively. These variants differ in their
channel dimensions and the number of layers per stage, as
detailed in Tab. 6.

8. Ablations
In Tab. 3, we provide additional ablation results regarding
the distillation training objective. For the GroupMamba-
T and GroupMamba-S variants, the distilled loss improves
performance by an absolute gain of 0.8% and 0.9%, respec-
tively. For the largest variant, GroupMamba-B, the distilled
loss improves performance by 1.3%. This demonstrates that
larger Mamba-based models with MLP tend to saturate and
struggle to converge effectively without distillation. Incor-
porating distillation for the large model boosts its perfor-
mance from 83.2% to 84.5%.

We also visualize the training loss curves with and with-
out our proposed distilled loss for GroupMamba-S in Fig. 5.
The shaded areas indicate the standard deviation of loss
across the training epochs. As shown, incorporating the dis-
tilled loss (green curve) consistently leads to lower training
losses and less loss variability throughout the training pro-
cess, leading to improved stability.

We compare in Tab. 4 the performance of different scan-
ning directions with respect to the number of groups for
GroupMamba-T. In the first row, we use Direction 1. In the
second row, we use Direction 1 and Direction 2. In the last
row, we use the four scanning scanning directions (As visu-
alized in Fig. 2 (d). Four groups with four directions cap-
ture richer spatial cues, which provide comprehensive fea-
ture representation and lead to higher top-1 accuracy with
comparable throughput.

We also conduct an ablation study to evaluate efficiency
with varying numbers of groups. While utilizing two groups
reduces parameters by 15% and four groups achieves a
reduction of 26%, employing eight groups yields only a
marginally greater reduction of 28% due to the nonlinear

Method #Param. FLOPs Top-1 acc.

GroupMamba-T w/o Distilled Loss 23M 4.6G 82.5
GroupMamba-T with Distilled Loss 23M 4.6G 83.3 (+0.8)

GroupMamba-S w/o Distilled Loss 34M 7.0G 83.0
GroupMamba-S with Distilled Loss 34M 7.0G 83.9 (+0.9)

GroupMamba-B w/o Distilled Loss 57M 14G 83.2
GroupMamba-B with Distilled Loss 57M 14G 84.5 (+1.3)

Table 3. Ablation study on GroupMamba variants with and with-
out the Distilled Loss.

Scanning Directions Throughput (ms) ↑ #Param ↓ Top-1 (%) ↑
D1 1096 23M 82.9
D1, D2 1087 23M 83.1
D1, D2, D3, D4 1069 23M 83.3

Table 4. Comparison of different scanning directions in terms of
throughput, parameters, and top-1 accuracy for GroupMamba-T.
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Figure 5. Training loss visualization for GroupMamba-S with and
without the proposed distilled loss.

scaling of MLP parameters. In addition, using eight groups
(with eight scanning directions) decreases throughput, neg-
atively impacting model efficiency. Hence, four groups
have the optimal trade-off between parameter reduction and
high throughput.

In Tab. 5, we present an additional ablation study
and a fair comparison between GroupMamba-T and
VMamba-T without distillation alongside another vari-
ant of GroupMamba-T designed to match the parameter
count of VMamba-T for balanced evaluation. Remark-
ably, GroupMamba-T achieves equivalent performance to
VMamba-T with 26% fewer parameters. When parameter
counts are matched, the enhanced variant, GroupMamba-
T†, outperforms VMamba-T, achieving a top-1 accuracy of
83.1% on ImageNet-1K, compared to 82.5% for VMamba-
T, without using any distillation.



Method #Param. FLOPs Top-1 acc.

VMamba-T 31M 4.9G 82.50%
GroupMamba-T 23M 4.5G 82.50%
GroupMamba-T† 31M 5.2G 83.10%

Table 5. Comparison of VMamba-T and GroupMamba-T without
distillation. The number of channels is increased in GroupMamba-
T† to match the same parameters of VMamba-T

9. Qualitative Results
In Fig. 6, we show additional qualitative results of
GroupMamba-T on samples from the ADE20K [69] vali-
dation set for semantic segmentation. The first row shows
the ground truth masks, while the second row displays the
predicted masks. Our model consistently has sharp and
accurate delineations, effectively capturing fine details and
complex object boundaries, further emphasizing its robust-
ness in semantic segmentation. Similarly, we present in
Fig. 7 additional qualitative results of GroupMamba-T on
samples from the COCO validation set [33], showcasing its
strong performance in both instance segmentation and ob-
ject detection tasks. The model excels at accurately local-
izing objects and producing precise segmentations, even in
complex scenes with varying scales, multiple instances, and
challenging backgrounds. The quantitative and qualitative
results of GroupMamba demonstrate the robust generaliza-
tion capability of our GroupMamba backbones across di-
verse downstream tasks, including semantic segmentation,
object detection, and instance segmentation.

10. Discussion
Our main contributions include introducing the Modu-
lated Group Mamba layer, which enhances computational
efficiency and interaction in state-space models through
a multi-direction scanning method. We also introduce
the Channel Affinity Modulation (CAM) operator to im-
prove feature aggregation across channels, addressing lim-
itations in grouping operations. Additionally, we employ a
distillation-based training objective to stabilize the training
of models with a large number of parameters. These contri-
butions enable us to achieve competitive performance with
recent state-space models in image classification, object de-
tection, instance segmentation, and semantic segmentation
with fewer number of parameters.

This can further facilitate the development of vision
foundation models based on Mamba that can be scaled to
a large number of parameters efficiently and stably. The
Modulated Group Mamba layer and CAM operator enhance
computational efficiency and feature interaction, allowing
models to manage more extensive and complex datasets
without excessive resource demands. The distillation-based

Figure 6. Qualitative results of GroupMamba-T for semantic seg-
mentation on ADE20K validation set. The first row shows the
ground truth for the masks, while the second and second show the
corresponding predictions of our model.

training objective ensures stability during training, which
is crucial for maintaining performance as model sizes in-
crease. Together, these advancements enable the creation of
scalable, reliable vision models that can be deployed effec-
tively in various real-world applications.

11. Limitations
Despite demonstrating clear improvements in efficiency,
stability, and accuracy for image classification tasks and
fewer parameters for dense prediction tasks, our proposed
Modulated Group Mamba layer shows relatively compara-
ble performance on downstream tasks such as object detec-
tion and segmentation to VMamba. This minor improve-
ment can be attributed to the more complex nature and di-
verse requirements of these dense prediction tasks, where
the accuracy relies heavily not only on effective global de-
pendency capture but also on more localized spatial fea-
ture aggregation and specialized detection or segmenta-
tion heads. The proposed model architecture enhances
parameter efficiency and global feature modeling through
SSM mechanisms, but addressing the intricacies inherent to
localization-sensitive tasks may require additional targeted
modules or task-specific optimizations.

Although the incorporation of knowledge distillation has
successfully improved training stability and yielded perfor-
mance gain for large-scale models, investigating more ef-
ficient or self-guided stabilization approaches would help
enhance the model training practicality without requiring
auxiliary external teacher models.



Stage Resolution Type Config GroupMamba

T S B

Stem H
2 × W

2 Patch Embedding Patch Size k=3x3, s=2

Embed. Dim. 32 64 64
H
4 × W

4 Patch Embedding Patch Size k=3x3, s=2

Embed. Dim. 96 96 128

1 H
4 × W

4 Modulated Group Mamba Layers 2 2 2
H
8 × W

8 Down-Sampling Patch Size k=3x3, s=2

Embed. Dim. 192 192 256

2 H
8 × W

8 Modulated Group Mamba Layers 2 2 2
H
16 × W

16 Down-Sampling Patch Size k=3x3, s=2

Embed. Dim. 368 384 496

3 H
16 × W

16 Modulated Group Mamba Layers 9 20 20
H
32 × W

32 Down-Sampling Patch Size k=3x3, s=2

Embed. Dim. 760 768 1012

4 H
32 × W

32 Modulated Group Mamba Layers 2 2 2

Parameters
FLOPs

23M
4.5G

34M
7.0G

57M
14.0G

Table 6. GroupMamba architectures. Description of the configurations of the model variants for the embedding size, the number of layers,
and the model’s GFLOPs and Parameters. Between two consecutive stages, we incorporate a downsampling layer to increase the number
of channels and reduce the resolution by two.

Figure 7. Qualitative results of GroupMamba-T for object detection and instance segmentation on the COCO validation set.
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