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A. Societal Impact
To achieve a thorough understanding of the broader im-
plications of our study, we assess the proposed method in
terms of both positive and negative impacts, followed by
suggestions to mitigate any adverse effects.

Positive Impact. Our proposed method offers several
societal benefits across different sectors. (1) This method
provides researchers with innovative tools, encouraging
them to explore challenges in semantic style transfer with
fresh perspectives. By promoting the development of sim-
ple and effective solutions, our approach plays a role in
advancing scientific discovery and accelerating innovation.
(2) Artists can leverage this method to enhance their cre-
ative workflow and optimize productivity. The tool not
only allows them to explore new artistic possibilities but
also supports them in creating high-quality works more ef-
ficiently. Additionally, for general users, this method of-
fers an accessible means to produce visually appealing out-
puts that align with semantic needs, enriching their creative
experience. (3) By democratizing artistic tools and lower-
ing barriers to creating stylistically unique digital art, this
method encourages wider participation in creative expres-
sion. Such accessibility can lead to increased cultural ex-
change, as individuals from diverse backgrounds share and
interpret art through new stylistic forms. This ultimately
strengthens social cohesion and broadens avenues for cul-
tural representation.

Negative Impact. While beneficial, the method also
presents potential risks that warrant attention. (1) As more
people adopt AI-assisted tools, there may be a gradual ero-
sion of unique artistic expression, with creators becoming
reliant on automated processes instead of traditional, per-
sonal techniques. This could lead to a homogenization of
digital art, where distinct styles and individual creativity are
diminished. (2) In the wrong hands, this technology could
be utilized to produce manipulated images or videos that
appear authentic, fostering misinformation. Misuse of styl-
ization techniques in this manner poses ethical concerns and
risks misleading audiences if safeguards are not established.

Mitigation Strategies. To counteract these negative im-
pacts, we propose the following measures: (1) By support-
ing customization features and encouraging users to incor-
porate personal touches in AI-assisted creations, we aim to
preserve artistic diversity and prevent homogenization. En-
abling flexibility in the method’s application allows artists
to maintain their unique creative identities while benefiting
from the technology. (2) Educating users on the ethical im-

plications and potential misuse of stylization techniques is
vital. By fostering an understanding of responsible AI use,
we can mitigate the risk of harmful applications and pro-
mote ethical practices.

B. Used Assets

We utilize the following assets for our experiments:

• SANet [15]: https://github.com/GlebSBrykin/
SANET, MIT license.

• StyTr2 [6]: https://github.com/diyiiyiii/
StyTR-2, No License.

• StyleID [4]: https://github.com/jiwoogit/
StyleID, MIT license.

• STROTSS [11]:https://github.com/nkolkin13/
STROTSS, No License.

• MAST [9]:https://github.com/NJUHuoJing/
MAST, No License.

• TR [24]:https://github.com/EndyWon/Texture-
Reformer, MIT license.

• DIA [13]:https://github.com/harveyslash/
Deep-Image-Analogy-PyTorch, MIT license.

• GLStyleNet [22]:https://github.com/EndyWon/
GLStyleNet, MIT license.

To the best of our knowledge, there are no moral or eth-
ical concerns associated with these assets. We have thor-
oughly reviewed their use to ensure compliance with eth-
ical standards, confirming that their implementation aligns
with responsible research practices. This careful considera-
tion reinforces our commitment to conducting research that
adheres to both ethical guidelines and scientific integrity.

C. Application Details

We select three representative Attn-AST methods for SCSA
embedding experiments: SANet [15], built on the CNN
framework, StyTR2 [6], based on the Transformer archi-
tecture, and StyleID [4], utilizing the Diffusion model. By
integrating SCSA into these Attn-AST methods, we aim to
investigate its performance in semantic style transfer tasks.

C.1. SANet with SCSA
Given a quadruple data {Ic, Icsem, Is, Issem}, consisting of
a content image Ic and its semantic map Icsem, a style im-
age Is and its semantic map Issem, and the SANet model
M = {E, TUA, D}, which is composed of an encoder E,
a feature transformation module TUA, and a decoder D, we
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aim to generate a stylized image Ics that meets the semantic
needs by replacing TUA with our TSCSA.

In the initial stage, we get the encoded quadruple fea-
tures {Fc, Fcsem, Fs, Fssem}:

Fc = E(Ic), Fs = E(Is),

Fcsem = E(Icsem), Fsem = E(Isem),
(1)

where E is a VGG-19 [18] encoder.
Subsequently, we feed the quadruple features into our

feature transformation module TSCSA. Thus, the following
operations will be performed:

Q1 = fq(F̄csem), K1 = fk(F̄ssem), V1 = fv(Fs),

Ā = G1(Q
T
1 ⊗K1),

Fsca =fo(softmax(Ā)⊗ V1),

(2)

where F̄x represents the normalized form of the features Fx

using its mean and standard deviation. fq , fk, fv , and fo
are the projection networks in TUA. G1 is the modulation
function in Eq.6 of the main paper. Fsca are the features that
contain the overall style characteristics of the corresponding
semantic regions. Then, we obtain the new encoded content
features using semantic adaptive instance normalization in
Sec.3.1 of the main paper:

Fc = S-AdaIN(Fc, Fs), (3)

where the new content features Fc partially eliminate the
influence of the inherent style of the original encoded fea-
tures of the content image, thereby offering a more precise
query for subsequent SSA and content features with distinct
stylistic characteristics of the style features. Hence, the fol-
lowing formulas exist for SSA:

Q2 = fq(F̄c), K2 = fk(F̄s), V2 = fv(Fs),

B̄ = G2(Q
T
2 ⊗K2),

Fssa =fo(softmax(B̄)⊗ V2),

(4)

where F̄x, fq , fk, fv , and fo are the same as those in Eq. 2.
G2 is the modulation function in Eq.11 of the main paper.
Fssa are the features characterized by fine and specific style
textures in the corresponding semantic regions. Then, the
stylized features through the feature transformation module
TSCSA can be obtained:

Fcs = α1 × Fsca + α2 × Fssa + Fc, (5)

where α1 and α2 indicate separately the stylization degree
for the overall style and vivid textures in semantic regions.
We set α1 = 0.7 and α2 = 0.3 in the main paper.

Ultimately, the stylized image can be produced:

Ics = D(Fcs), (6)

where the decoder D structure mirrors that of VGG-19.

C.2. StyTr2 with SCSA
Given a quadruple data {Ic, Icsem, Is, Issem}, consisting of
a content image Ic and its semantic map Icsem, a style im-
age Is and its semantic map Issem, and the StyTr2 model
M = {Ec, Es, TUA, D}, which is composed of a content
encoder Ec, a style encoder Es, some feature transforma-
tion transformer modules TUA, and a decoder D, we aim to
generate a stylized image Ics that meets the semantic needs
by replacing TUA with our TSCSA.

As a first step, we get the encoded quintuple features
{Fc, Fcsem, F c

s , F
s
s , Fssem}:

Fc = Ec(Ic), F
c
s = Ec(Is), F

s
s = Es(Is),

Fcsem = Ec(Icsem), Fsem = Es(Isem),
(7)

where Ec and Es are the content and style transformer [21]
encoders, respectively.

Consequently, we feed the quintuple features into our
feature transformation module TSCSA. Thus, the following
operations will be performed:

Q1 = fq(Fcsem), K1 = fk(Fssem), V1 = fv(F
s
s ),

Ā = G1(Q
T
1 ⊗K1),

Fsca =fo(softmax(Ā)⊗ V1),

(8)

where fq , fk, fv , and fo are the projection networks in TUA.
G1 is the modulation function in Eq.6 of the main paper.
Fsca are the features that contain the overall style character-
istics of the corresponding semantic regions. Then, we ob-
tain the new encoded content features using semantic adap-
tive instance normalization in Sec.3.1 of the main paper:

FS-AdaIN
c = S-AdaIN(Fc, F

c
s ), (9)

where the new content features FS-AdaIN
c partially elim-

inate the influence of the inherent style of the original en-
coded features of the content image, thereby offering a more
precise query for subsequent SSA and content features with
distinct stylistic characteristics of the style features. Hence,
the following formulas exist for SSA:

Q2 = fq(F
S-AdaIN
c ), K2 = fk(F

s
s ), V2 = fv(F

s
s ),

B̄ = G2(Q
T
2 ⊗K2),

Fssa = fo(softmax(B̄)⊗ V2),
(10)

where fq , fk, fv , and fo are the same as those in Eq. 8.
G2 is the modulation function in Eq.11 of the main paper.
Fssa are the features characterized by fine and specific style
textures in the corresponding semantic regions. Then, the
stylized features through the feature transformation module
TSCSA can be obtained:

Fcs = α1×Fsca+α2×Fssa+b×FS-AdaIN
c +(1−b)×Fc,

(11)



where α1 and α2 indicate separately the stylization degree
for the overall style and vivid textures in semantic regions.
We set α1 = 1.2 and α2 = 0.5. b is used to trade off
the degree of the semantic style initialization of the con-
tent features and the degree of content preservation. We set
b = 0.7. Fcs are utilized as the new content features for the
subsequent feature transformation modules. It is important
to note that we focus on aligning the semantic style of con-
tent features only in the first feature transformation module,
while b = 0 is set for the remaining feature transformation
modules.

Ultimately, the stylized image can be produced:

Ics = D(Fcs), (12)

where the even-numbered transformers of the decoder D
are replaced with our TSCSA.

C.3. StyleID with SCSA
Given a quadruple data {Ic, Icsem, Is, Issem}, consisting of
a content image Ic and its semantic map Icsem, a style im-
age Is and its semantic map Issem, and the StyleID model
M = {E,U -Net,D}, which is composed of a encoder E,
a denoising model U -Net [17], and a decoder D, we aim to
generate a stylized image Ics that meets the semantic needs
by replacing certain TUA of U -Net module with TSCSA.

First of all, we obtain the encoded quadruple features
{Xc0, Xcsem0, Xs0, Xssem0} at the time step t = 0:

Xc0 = E(Ic), Xs0 = E(Is),

Xcsem0 = E(Icsem), Xsem0 = E(Isem),
(13)

where E is a VAE [10] encoder.
Following that, we acquire the noisy quadruple features

{FcT , FcsemT , FsT , FssemT } from certain TUA layers of
U -Net at the time step t = T via DDIM inversion [19]:

FcT = DD-SA(Xc0), FsT = DD-SA(Xs0),

FcsemT = DD-SA(Xcsem0), FsemT = DD-SA(Xsem0),
(14)

where DD-SA represents the DDIM inversion and extract-
ing features from the TUA layers.

As a next step, we obtain the new noisy content features
using semantic adaptive instance normalization in Sec.3.1
of the main paper:

FcT = S-AdaIN(FcT , FsT ), (15)

where the new features FcT partially eliminate the influ-
ence of the inherent style of the original noisy features. This
provides a more precise query for the subsequent SCA and
SSA, along with content features that exhibit distinct stylis-
tic characteristics from the style features.

Following this, we feed the noisy quadruple features into
our feature transformation module TSCSA. Thus, the fol-
lowing operations will be performed:

Q1 = fq(t1 × F̄csemT + (1− t1)× F̄cT ),

K1 = fk(t1 × F̄ssemT + (1− t1)× F̄sT ),

V1 = fv(FsT ),

Ā = G1(Q
T
1 ⊗K1),

Fsca =fo(softmax(Ā)⊗ V1),

(16)

where F̄x represents the normalized form of the features Fx

using its normalized networks in TUA. t1 represents the
trade-off between semantic stylization and content preser-
vation. We set t1 = 0.3. fq , fk, fv , and fo are the projection
networks in TUA. G1 is the modulation function in Eq.6 of
the main paper. Fsca are the features that contain the overall
style characteristics of the corresponding semantic regions.
Similarly, the following formulas exist for SSA:

Q2 = fq(t2 × F̄cT + (1− t2)× F̃T ),

K2 = fk(F̄sT ), V2 = fv(FsT ),

B̄ = G2(Q
T
2 ⊗K2),

Fssa = fo(softmax(B̄)⊗ V2),

(17)

where F̄x, fq , fk, fv , and fo are the same as those in Eq. 14.
FT represent the input features of TUA. F̃T represents the
normalized form of the features FT using its mean and stan-
dard deviation. t2 represents the trade-off between content
preservation and semantic stylization, similar to that in [4].
We set t2 = 0.5. G2 is the modulation function in Eq.11
of the main paper. Fssa are the features characterized by
fine and specific style textures in the corresponding seman-
tic regions. Then, the stylized features through the feature
transformation module TSCSA can be obtained:

Fcs = α1 × Fsca + α2 × Fssa + FcT , (18)

where α1 and α2 indicate separately the stylization degree
for the overall style and vivid textures in semantic regions.
We set α1 = 0.8 and α2 = 0.2 in the main paper. It is worth
noting that we use the features FcT processed by semantic
adaptive instance normalization only at the time step t = T ,
while replacing it with the input features of TUA at other
time steps.

Ultimately, the stylized image can be produced:

Ics = D(Xcs0), (19)

where Xcs0 represents the output of the U -Net at the time
step t = 0 through the above DDIM sample. D is a
VAE [10] decoder.



Content Style

α1 = 0.1 0.3 0.5 0.7 0.9

α
2
=

0.1
0
.3

0
.5

0
.7

0
.9

Figure 1. Comparisons of the overall style and local texture inten-
sity in semantic regions of SANet embedded with our SCSA.

D. Parameter Analysis
To achieve a more comprehensive understanding of the ef-
fects of experimental parameters, we also perform addi-
tional experiments that delve into their specific roles and
contributions, providing deeper insights into the effective-
ness of our method across various conditions.

Overall Style-Local Texture Intensity. Our SCSA en-
ables dynamic adjustment of the intensity of overall style
and local textures in corresponding semantic regions. To
demonstrate this, we conduct relevant experiments for com-
prehensive analyses.

As shown in Fig. 1, Fig 2, and Fig 3 an increase in the
parameter α1 enhances the overall style expression of the
semantic regions. In contrast, a rise in parameter α2 brings
greater clarity to the textures within these regions.

Content-Style Trade-off. Through adjustments to pa-
rameter b in Sec. C.2 and parameters t1 and t2 in Sec. C.3,
our method offers a flexible balance between stylization
intensity and content preservation. To illustrate this, we
perform a series of targeted experiments, allowing for an
in-depth analysis and comprehensive evaluation. It is im-
portant to highlight that the effectiveness of t2 has already
been established in [4]. Thus, our focus here will be solely
on demonstrating the content preservation capability of t1,
thoroughly examining its impact on maintaining the in-
tegrity of the original content during the stylization process.

As illustrated in Fig. 4, with the increase of the param-
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Figure 2. Comparisons of the overall style and local texture inten-
sity in semantic regions of StyTr2 embedded with our SCSA.
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Figure 3. Comparisons of the overall style and local texture inten-
sity in semantic regions of StyleID embedded with our SCSA.

eter b, the degree of stylization progressively intensifies,
while the level of content preservation experiences a slight
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Figure 4. Comparisons of the trade-off between content preserva-
tion and stylization of StyTr2 embedded with SCSA.

Inputs t1 = 0.1 0.3 0.5 0.7 0.9

Figure 5. Comparisons of the trade-off between content preserva-
tion and stylization of StyleID embedded with SCSA.

decline. This phenomenon is particularly evident across
different subjects. For instance, in the 1st row, the boat’s
structure becomes more pronounced in the stylization pro-
cess; while its basic form remains discernible, the accu-
racy of content preservation decreases slightly. In the 2nd
row, the eyes of the horse exhibit more distinctive stylis-
tic features, although their original characteristics are some-
what retained, the details appear less clear. In the 3rd row,
the eyes of the person maintain their fundamental structure
while integrating more stylistic elements, which also affects
their level of content preservation.

As shown in Fig. 5, as t1 increases, the degree of styl-
ization in semantic regions gradually intensifies, while the
ability to maintain content declines, e.g., the building struc-
tures in the 1st row, the cloth in the 2nd row the house in
the 3rd row. Therefore, t1 allows for a trade-off between
semantic stylization and content preservation.

E. Dataset Details

We select content and style images from prior research [1, 2,
8, 12, 20, 23, 25–29], publicly available datasets [5, 7, 16,
30], and the Internet to ensure a diverse and comprehen-

Inputs SANet + SCSA + S-AdaIN + Style-Swap

SSL ↓ 1.6583 0.8762 1.7289 1.5751
FID ↓ 14.3385 13.0788 14.2748 14.1523

CFSD ↓ 0.1103 0.0874 0.1057 0.1077

Figure 6. Qualitative and quantitative comparisons among CNN-
based SANet, SANet with SCSA, SANet with S-AdaIN, and
SANet with Style-Swap.

sive set of images. These sources provide a broad spectrum
of content and style representations, encompassing various
domains and visual styles. We then construct the semantic
maps for each image, capturing their intrinsic features and
structural elements. Based on these maps, we generate 91
validated quadruple data, which will be made publicly avail-
able upon acceptance of the paper to foster further research
and development in semantic style transfer.

F. Ablation Study

To comprehensively validate the superiority of our proposed
SCSA method, we incorporate the existing S-AdaIN [14]
and Style-Swap [3] techniques into the universal attention
module of the Attn-AST framework.

SCSA vs. S-AdaIN. As shown in Fig. 6, Fig. 7, and
Fig 8, S-AdaIN can achieve semantic style transfer to some
extent, but the degree of semantic stylization is far inferior
to ours. For example, in the 3rd row of Fig. 6, our heart fea-
tures dense tree-like textures, while S-AdaIN lacks these,
and its global style of semantic regions is not effectively
transferred. In the 1st row of Fig. 7, the overall style of
our mountains is continuous, whereas S-AdaIN lacks this.
A similar difference is in the 2nd row in Fig. 8. In addition
to the qualitative comparison, the quantitative results from
the three figures further demonstrate that the degree of styl-
ization in stylized images generated by S-AdaIN is notably
lower than that of our method, as reflected in the higher SSL
and FID values. Also, incorporating S-AdaIN into SANet
and StyTr2 leads to inferior content preservation compared
to our method, as indicated by higher CFSD values.

SCSA vs. Style-Swap. As shown in Fig. 6, Fig. 7, and
Fig. 8, although Style-Swap can achieve some degree of se-



Inputs StyTr2 + SCSA + S-AdaIN + Style-Swap

SSL ↓ 1.9826 1.2228 1.7318 1.3824
FID ↓ 12.5273 12.3963 14.9473 13.9573

CFSD ↓ 0.0752 0.0705 0.1007 0.0818

Figure 7. Qualitative and quantitative comparisons among
Transformer-based StyTr2, StyTr2 with SCSA, StyTr2 with S-
AdaIN, and StyTr2 with Style-Swap.

Inputs StyleID + SCSA + S-AdaIN + Style-Swap

SSL ↓ 1.7538 1.2447 1.6054 2.5032
FID ↓ 12.5944 12.4497 12.5771 19.3049

CFSD ↓ 0.0916 0.1178 0.0939 0.0732

Figure 8. Qualitative and quantitative comparisons of Diffusion-
based StyleID, StyleID with SCSA, StyleID with S-AdaIN, and
StyleID with Style-Swap.

mantic style transfer, it still lacks the accuracy of the trans-
ferred semantic style and the continuity within the same se-
mantic region. A case in point is the 3rd row of Fig. 6 (the
heart), the 3rd row of Fig.7 (the grass), and the 1st row of
Fig. 8 (the background), where the corresponding semantic
regions fail to undergo accurate and continuous style trans-
fer. Furthermore, the overall stylization effect of stylized
images generated by Style-Swap is significantly inferior to
that of our method, as evidenced by its higher SSL and FID
values in the three figures compared to SCSA.

The above analysis demonstrates that our SCSA greatly
outperforms both S-AdaIN and Style-Swap in qualitative
and quantitative perspectives, proving its superiority.

G. User Study

Our user study is primarily divided into two main parts.
In one part of the user study, we presented participants

with corresponding data quadruples {Ic, Icsem, Is, Issem}
along with a stylized image generated by a traditional
Attn-AST method, randomly selected from CNN-based,
Transformer-based, and Diffusion-based approaches, and
one produced by the corresponding traditional Attn-AST
method with our SCSA embedded, both displayed in ran-
dom order. We asked participants to select, “Which im-
age do you believe represents the most satisfactory result
of semantic style transfer?” This part aims to compare user
preferences between the SCSA-embedded Attn-AST ap-
proaches and the traditional Attn-AST methods, thereby
validating the effectiveness and generalization of our SCSA
in semantic style transfer.

In another part, we also presented participants with the
corresponding data quadruples {Ic, Icsem, Is, Issem}, along
with three stylized images generated by the traditional
Attn-AST method with our SCSA embedded, CNN-based,
Transformer-based, and diffusion-based methods, as well
as stylized images produced by five SOTA semantic style
transfer methods. The display order of eight stylized images
was randomized. Again, we asked participants to select the
stylized image they found most satisfactory. This part aims
to validate the effectiveness of our SCSA in comparison to
SOTA semantic style transfer methods, providing a subjec-
tive basis for establishing our approach as a new benchmark
for semantic style transfer.

We invited 40 participants to take part in our user study,
with each participant responding to a total of 30 questions-
15 in each of the two previously mentioned sections. This
comprehensive survey design enabled us to gather detailed
insights into user preferences, ultimately resulting in the
collection of 1,200 votes, which will be essential for our
analysis and validation of the findings.

H. Additional Experiment

In the main paper, we have verified the generalization of
SCSA when integrated in the Attn-AST methods. To fur-
ther validate the generalization of our proposed SCSA con-
cerning data, we carry out an additional experiment. Specif-
ically, we broaden the scope of semantics, extending them
beyond individual instances to encompass regions that share
the same semantic mask. In this context, the instance se-
mantics within these regions targeted for style transfer may
not be entirely uniform.

As shown in Fig. 9, our SCSA exhibits remarkable data
generalization. It is capable of processing not only data with
consistent semantic instances but also data with distinct se-
mantic instances, as long as users can provide correspond-
ing identical mask labels.



Content Style SANet SANet + SCSA StyTr2 StyTr2 + SCSA StyleID StyleID + SCSA

Figure 9. Qualitative comparisons between Attn-AST approaches and they with our SCSA for different semantics.

I. More Discussions

Effects of Attn-AST methods with SCSA. As stated in the
main paper, SCSA is a plug-and-play semantic style trans-
fer method. The quality of the stylized images it produces is
directly influenced by the capability of the underlying Attn-
AST model. Especially, the stronger the transfer style abil-
ity of the Attn-AST model, the more remarkable the seman-
tic stylization effects achieved when integrated with SCSA.

Processing costs of Attn-AST methods with SCSA. As
SCSA incorporates the processing and guidance of seman-
tics, Attn-AST methods with SCSA require more time and
memory than the original Attn-AST. However, our primary
focus is currently on the effectiveness of semantic styliza-
tion, with efficiency optimization planned as a future re-
search direction.

J. Qualitative Comparison

To conduct a more in-depth evaluation of SCSA, we present
a broader array of qualitative results.

As shown in Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14,
Fig. 15, and Fig. 16, our SCSA method seamlessly enhances
existing arbitrary style transfer techniques, enabling versa-
tile semantic style transfer with performance that exceeds
current state-of-the-art methods in both intensity and sta-
bility. Specifically, the stylized images produced by DIA
exhibit incomplete contents of the content images. The styl-
ized images generated by TR, STROTSS, and GLStyleNet
sometimes incorporate content elements from the style im-
age. MAST occasionally yields semantic stylization results
that lack accuracy.
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Figure 10. Qualitative comparisons among Attn-AST approaches, those with SCSA, and SOTA methods.
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Content Style SANet SANet + SCSA StyTr2 StyTr2 + SCSA StyleID StyleID + SCSA

STROTSS MAST TR DIA GLStyleNet

Figure 11. Qualitative comparisons among Attn-AST approaches, those with SCSA, and SOTA methods.
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Content Style SANet SANet + SCSA StyTr2 StyTr2 + SCSA StyleID StyleID + SCSA

STROTSS MAST TR DIA GLStyleNet

Figure 12. Qualitative comparisons among Attn-AST approaches, those with SCSA, and SOTA methods.
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Figure 13. Qualitative comparisons among Attn-AST approaches, those with SCSA, and SOTA methods.
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Figure 14. Qualitative comparisons among Attn-AST approaches, those with SCSA, and SOTA methods.
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Figure 15. Qualitative comparisons among Attn-AST approaches, those with SCSA, and SOTA methods.
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Figure 16. Qualitative comparisons among Attn-AST approaches, those with SCSA, and SOTA methods.
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