
Supplementary Material

S1. Experimental Details

S1.1. Augmentations

The simple augmentation policy consists of a random crop
and a horizontal flip, drawn from a widely used test-time
augmentation policy in image classification [23]. The
random crop pads the original image by 4 pixels and takes
a 256x256 crop of the resulting image. The expanded
augmentation consists of 12 augmentations; certain aug-
mentations are stochastic, while others are deterministic.
We design this set based on the augmentations included
in AutoAugment [11]. We exclude certain augmentations,
however, to exclude 1) redundancies among augmentations
and thereby make the learned weights interpretable and
2) augmentations are unlikely to be label-preserving. In
particular, we exclude CutOut (because it is clearly not
label-preserving in many domains) and exclude brightness,
contrast, saturation, and color for their overlap with
color-jitter. We also exclude contrast, because it is already
modified via autocontrast, and equalize and solarize for
their overlap with autocontrast and invert. This leaves us
the following augmentations:

• Shear: Shear an image by some number of degrees, sampled
between [-10, 10] (stochastic).

• Translate: Samples a vertical shift (by fraction of image height)
from [0, .1] (stochastic).

• Rotate: Samples a rotation (by degrees) from [-10, 10] (stochas-
tic).

• Autocontrast: Maximizes contrast of images by remapping pixel
values such that the the lowest becomes black and the highest
becomes white (deterministic).

• Invert: Inverts the colors of an image (deterministic).
• Blur: Applies Gaussian blur with kernel size 5 (and default �

range of [.1, .2]) (stochastic).
• Posterize: Reduces the number of bits per channel to 4 (deter-

ministic).
• Color Jitter: Randomly samples a brightness, contrast, and sat-

uration adjustment parameter from the range [.9, 1.1] (stochas-
tic).

• Increase Sharpness: Adjusts sharpness of image by a factor of
1.3 (deterministic).

• Decrease Sharpness: Adjusts sharpness of image by a factor of
0.7 (deterministic).

• Random Crop: Pads each image by 4 pixels, takes a 256x256
crop, and then proceeds to take a 224x224 center crop (stochas-
tic).

• Horizontal Flip: Flips image horizontally (deterministic).

There are many possible expanded test-time augmentation
policies; this particular policy serves as an illustrative ex-
ample.

S1.2. Learning aggregation function
We learn ĝ by minimizing the cross-entropy loss with re-
spect to the true labels on the calibration set. Specifically,
we learning the weights using SGD with a learning rate of
.01, momentum of .9, and weight decay of 1e-4. We train
each model for 50 epochs. There are natural improvements
to our optimization, but this is not the focus of our work.
Instead, our goal is to highlight the surprising effectiveness
of TTA-Learned without the introduction of hyperparameter
optimization. We train all models using a machine equipped
with 4 Titan Xp GPUs, 2 Octa Intel Xeon E5-2620 CPUs,
and 1TB of RAM.

S2. Supplementary Results
S2.1. Test-Time Augmentation and APS
TTA-Learned combined with the expanded augmentation
policy produces the smallest set sizes when combined with
APS, across the datasets considered (Table S1) and each
base classifier (Table S3). In contrast to the results us-
ing RAPS, TTA-Learned does not significantly outperform
TTA-Avg when combined with APS. The central reason is
that the improvements TTA confers — namely, improved
top-k accuracy — do not address the underlying sensitiv-
ity of APS to classes with low predicted probabilities. As
Angelopoulos et al. [1] discuss, APS produces large predic-
tion sets because of noisy estimates of small probabilities,
which then end up included in the prediction sets. Both
TTA-Learned and TTA-Avg smooth the probabilities: they
reduce the number of low-probability classes by aggregat-
ing predictions over perturbations of the image. The benefit
that both TTA-Learned and TTA-Avg add to APS is thus
similar to how RAPS penalizes classes with low probabili-
ties.

S2.2. Comparison to Top-1 and Top-5
We expand Table 1 to include the Top-1 and Top-5 baselines
in Table S6. Unsurprisingly, neither outperform RAPS, and
consequently none outperform the combination of RAPS,
TTA-Learned, and the expanded augmentation policy.

S2.3. Comparison to minimizing focal loss
We expand Table 1 to include results for a variant of TTA-
Learned which uses a focal loss in place of the cross-
entropy loss. We conduct this exploration because empir-
ically, the focal loss has been known to produce better-
calibrated models. Table S7 reports our results. We see
little difference between results when using a different loss
function; RAPS+TTA-Leanred still outperforms RAPS + an
average over the test-time augmentations, and RAPS alone.
While this speaks to the method’s flexibility to different loss
functions, it is possible that the use of a loss function de-
signed to reduce prediction set size could produce better



performance.

S2.4. Impact on coverage
We provide exact values of coverage for the main experi-
ments here. In short, TTA-Learned combined with the ex-
panded augmentation policy never worsens coverage, and
in some cases, significantly improves it (although the im-
provements are small in magnitude). Coverage values for
the RAPS experiment across coverage values and datasets
can be found in Table S8 and coverage values for the RAPS
experiment across base classifiers can be found in Table S9.
Similarly, we provide coverage values for the APS exper-
iment across datasets (Table S2) and across models (Table
S3).

S2.5. Impact of different coverage guarantees and
datasets

We replicate the class-specific analysis for ImageNet at a
value of ↵ = .05 (Figure S5), iNaturalist (Figure S6), and
CUB-Birds (Figure S7). All trends are consistent with re-
sults in the main text, save for one notable exception: when
TTA-Learned is applied to CUB-Birds, prediction set sizes
of the classes with the smallest prediction set sizes and
classes that are easier to predict benefit most from TTA. The
significance of the relationship between original prediction
set size and TTA improvement disappears when conducted
on an example level in this setting. This could be a result of
class imbalance in the dataset; it is possible that the class-
average prediction set size obscures important variation in
CUB-Birds.

S2.6. Impact of augmentation policy size
We also analyze the impact of augmentation policy size on
average prediction set size for CUB-Birds (Figure S2), to
understand if additional augmentations may produce larger
reductions in set size than we observe. Larger augmentation
policies appear to provide an improvement to average pre-
diction set size at ↵ = .05, but offer little improvement for
↵ = .01.

S2.7. Impact of TTA data split
Learning the test-time augmentation policy requires a set of
labeled data distinct from those used to select the confor-
mal threshold. This introduces a trade-off: more labeled
data for test-time augmentation may result in more accurate
weights, but a less accurate conformal threshold, and vice
versa. We study this tradeoff empirically in the context of
ImageNet and the expanded augmentation policy and show
results in Figure S3. We find that, as more data is taken
away from the conformal calibration set, variance in perfor-
mance grows. This is in line with our intuition; we have
fewer examples to approximate the distribution of confor-
mal scores. However, at all percentages, test-time augmen-

tation introduces a significant improvement in prediction set
sizes over using all the labeled examples, and their original
probabilities, to determine the threshold. This suggests that
the benefits TTA confers outweigh the costs to the estima-
tion of the conformal threshold, a practically useful insight
to those who wish to apply conformal prediction in prac-
tice6

S2.8. Impact of calibration set size
We plot the relationship between calibration set size and av-
erage prediction set size in Figure S4 across two augmenta-
tion policies, two datasets, and two values of ↵. We see that
TTA is more effective the larger the calibration set, in the
context of ImageNet. In the context of CUB-Birds, it ap-
pears that TTA approaches equivalence with the conformal
score alone as the calibration set size increases.

S2.9. Impact of different backbone architecture
Our results in the main text are limited to a single architec-
ture (residual networks). Here, we provide evidence of gen-
eralizability to different architectures by replicating our Im-
ageNet results using MobileNetV2, across a range of cover-
age guarantees and both augmentation policies (Table S11)
and find consistent results, which support the versatility of
the proposed method.



Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 APS 98.493 ± 3.075 131.681 ± 3.515 19.436 ± 0.995 98.493 ± 3.075 131.681 ± 3.515 19.436 ± 0.995
0.01 APS+TTA-Avg 68.714 ± 2.856 84.546 ± 3.655 17.715 ± 1.523 92.027 ± 4.797 145.401 ± 4.635 19.152 ± 1.667
0.01 APS+TTA-Learned 69.009 ± 2.156 85.093 ± 2.768 17.766 ± 1.608 90.613 ± 6.421 144.134 ± 4.371 18.552 ± 1.326
0.05 APS 19.820 ± 0.482 33.481 ± 0.786 5.921 ± 0.192 19.820 ± 0.482 33.481 ± 0.786 5.921 ± 0.192
0.05 APS+TTA-Avg 14.308 ± 0.279 26.021 ± 0.282 4.870 ± 0.208 18.862 ± 0.498 37.370 ± 0.735 6.306 ± 0.350
0.05 APS+TTA-Learned 14.084 ± 0.241 26.289 ± 0.529 4.913 ± 0.145 19.119 ± 0.479 36.940 ± 0.632 6.361 ± 0.480

0.10 APS 8.969 ± 0.158 16.755 ± 0.394 3.455 ± 0.164 8.969 ± 0.158 16.755 ± 0.394 3.455 ± 0.164
0.10 APS+TTA-Avg 7.193 ± 0.101 14.583 ± 0.333 3.108 ± 0.114 8.787 ± 0.136 18.300 ± 0.418 3.609 ± 0.135
0.10 APS+TTA-Learned 7.215 ± 0.106 14.538 ± 0.395 3.046 ± 0.073 8.813 ± 0.180 18.086 ± 0.420 3.638 ± 0.146

Table S1. We replicate our experiments across coverage levels and datasets using APS, another conformal score. TTA-Learned combined
with the expanded augmentation policy produces the smallest set sizes across all comparisons. Interestingly, the simple augmentation
policy is not as effective in the context of iNaturalist when using APS.

Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 APS 0.980 ± 0.001 0.986 ± 0.000 0.985 ± 0.001 0.980 ± 0.001 0.986 ± 0.000 0.985 ± 0.001
0.01 APS+TTA-Avg 0.985 ± 0.001 0.989 ± 0.001 0.989 ± 0.002 0.981 ± 0.001 0.987 ± 0.000 0.986 ± 0.003
0.01 APS+TTA-Learned 0.985 ± 0.001 0.989 ± 0.001 0.990 ± 0.002 0.980 ± 0.002 0.987 ± 0.000 0.985 ± 0.002
0.05 APS 0.931 ± 0.002 0.952 ± 0.001 0.945 ± 0.004 0.931 ± 0.002 0.952 ± 0.001 0.945 ± 0.004
0.05 APS+TTA-Avg 0.944 ± 0.002 0.956 ± 0.001 0.949 ± 0.005 0.937 ± 0.002 0.960 ± 0.001 0.949 ± 0.004
0.05 APS+TTA-Learned 0.943 ± 0.002 0.957 ± 0.001 0.950 ± 0.005 0.937 ± 0.002 0.959 ± 0.001 0.950 ± 0.005

0.10 APS 0.896 ± 0.002 0.923 ± 0.001 0.915 ± 0.006 0.896 ± 0.002 0.923 ± 0.001 0.915 ± 0.006
0.10 APS+TTA-Avg 0.903 ± 0.002 0.930 ± 0.001 0.920 ± 0.007 0.905 ± 0.002 0.933 ± 0.001 0.922 ± 0.005
0.10 APS+TTA-Learned 0.904 ± 0.002 0.930 ± 0.001 0.918 ± 0.006 0.906 ± 0.002 0.932 ± 0.001 0.922 ± 0.004

Table S2. Coverage values associated with experiments in Table S1. TTA-Learned produces significant improvements in coverage —
larger in magnitude than in conjunction with RAPS — across when using the expanded augmentation policy. TTA-Learned produces no
drops in coverage when using the simple augmentation policy, a nd produces improvements at ↵ = .01 and ↵ = .05.

Figure S1. Impact on coverage. We plot achieved coverage for both RAPS and RAPS+TTA-Learned across several coverage guarantees
and distribution shifts. As expected, distribution shift leads conformal predictors to not meet the coverage guarantee. In each case, the
addition of TTA does not worsen coverage; in some cases (for example, given the contrast corruption and a coverage guarantee of 0.05) it
even improves coverage.



Expanded Aug Policy Simple Aug Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 APS 98.493 ± 3.075 88.279 ± 4.121 79.231 ± 4.570 98.493 ± 3.075 88.279 ± 4.121 79.231 ± 4.570
0.01 APS+TTA-Avg 68.714 ± 2.856 64.197 ± 2.336 62.885 ± 3.125 92.027 ± 4.797 77.344 ± 2.214 73.377 ± 3.600
0.01 APS+TTA-Learned 69.009 ± 2.156 64.852 ± 2.823 64.045 ± 3.398 90.613 ± 6.421 78.627 ± 4.101 74.571 ± 3.516
0.05 APS 19.820 ± 0.482 15.830 ± 0.611 14.437 ± 0.591 19.820 ± 0.482 15.830 ± 0.611 14.437 ± 0.591
0.05 APS+TTA-Avg 14.308 ± 0.279 11.085 ± 0.267 10.605 ± 0.373 18.862 ± 0.498 15.039 ± 0.405 14.206 ± 0.499
0.05 APS+TTA-Learned 14.084 ± 0.241 11.118 ± 0.209 10.595 ± 0.368 19.119 ± 0.479 15.011 ± 0.346 14.252 ± 0.486
0.10 APS 8.969 ± 0.158 6.671 ± 0.175 6.134 ± 0.163 8.969 ± 0.158 6.671 ± 0.175 6.134 ± 0.163
0.10 APS+TTA-Avg 7.193 ± 0.101 5.454 ± 0.098 5.111 ± 0.096 8.787 ± 0.136 6.838 ± 0.143 6.309 ± 0.178
0.10 APS+TTA-Learned 7.215 ± 0.106 5.490 ± 0.090 5.131 ± 0.061 8.813 ± 0.180 6.826 ± 0.121 6.311 ± 0.123

Table S3. Results across base classifiers using APS alone, APS + TTA-Avg, and APS + TTA-learned in conjunction with the expanded
augmentation policy (left) and simple augmentation policy (right). TTA-Learned and the expanded augmentation policy produce the
smallest prediction sets (on average).

Expanded Aug Policy Simple Aug Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 APS 0.980 ± 0.001 0.979 ± 0.002 0.978 ± 0.002 0.980 ± 0.001 0.979 ± 0.002 0.978 ± 0.002
0.01 APS+TTA-Avg 0.985 ± 0.001 0.985 ± 0.001 0.984 ± 0.001 0.981 ± 0.001 0.980 ± 0.001 0.978 ± 0.002
0.01 APS+TTA-Learned 0.985 ± 0.001 0.985 ± 0.001 0.984 ± 0.001 0.980 ± 0.002 0.980 ± 0.002 0.979 ± 0.002
0.05 APS 0.931 ± 0.002 0.930 ± 0.002 0.929 ± 0.002 0.931 ± 0.002 0.930 ± 0.002 0.929 ± 0.002
0.05 APS+TTA-Avg 0.944 ± 0.002 0.942 ± 0.001 0.942 ± 0.002 0.937 ± 0.002 0.935 ± 0.002 0.934 ± 0.002
0.05 APS+TTA-Learned 0.943 ± 0.002 0.942 ± 0.001 0.942 ± 0.002 0.937 ± 0.002 0.935 ± 0.001 0.934 ± 0.002
0.10 APS 0.896 ± 0.002 0.892 ± 0.002 0.893 ± 0.002 0.896 ± 0.002 0.892 ± 0.002 0.893 ± 0.002
0.10 APS+TTA-Avg 0.903 ± 0.002 0.901 ± 0.001 0.902 ± 0.001 0.905 ± 0.002 0.903 ± 0.001 0.903 ± 0.002
0.10 APS+TTA-Learned 0.904 ± 0.002 0.902 ± 0.001 0.902 ± 0.001 0.906 ± 0.002 0.903 ± 0.002 0.903 ± 0.002

Table S4. Coverage values for APS and TTA variants of APS across base classifiers, using ImageNet. TTA-Learned or TTA-Avg in
combination with the expanded augmentation policy significantly improve coverage in every comparison.

Expanded Aug Policy Simple Aug Policy

Method ResNet50 ResNet101 ResNet152 ResNet50 ResNet101 ResNet152

Original 0.761 ± 0.002 0.773 ± 0.001 0.783 ± 0.002 0.761 ± 0.002 0.773 ± 0.001 0.783 ± 0.002
TTA-Avg 0.764 ± 0.002 0.778 ± 0.001 0.788 ± 0.002 0.77 ± 0.002 0.783 ± 0.001 0.792 ± 0.002
TTA-Learned 0.771 ± 0.002 0.785 ± 0.001 0.793 ± 0.002 0.771 ± 0.002 0.784 ± 0.001 0.793 ± 0.002

Table S5. TTA effect on classifier performance. We report differences in classifier performance using a learned test-time augmentation
policy compared to a simple average (TTA-Avg) and no test-time augmentation (Original). TTA-Learned offers small improvements over
a simpler average and the original model across architectures. FILL IN THE REST, explain how TTA’s improvement to Top-1 accuracy
alone is small, and does not fully explain the value of test-time augmentation to conformal prediction.



ImageNet iNaturalist CUB-Birds

Alpha Method Prediction Set Size Empirical Coverage Prediction Set Size Empirical Coverage Prediction Set Size Empirical Coverage

0.01 Top-1 1.000 ± 0.000 0.761 ± 0.002 1.000 ± 0.000 0.766 ± 0.001 1.000 ± 0.000 0.804 ± 0.008
0.01 Top-5 5.000 ± 0.000 0.928 ± 0.001 5.000 ± 0.000 0.915 ± 0.001 5.000 ± 0.000 0.959 ± 0.003
0.01 RAPS 37.751 ± 2.334 0.990 ± 0.001 61.437 ± 6.067 0.990 ± 0.001 15.293 ± 2.071 0.990 ± 0.001
0.01 RAPS+TTA-Avg 35.600 ± 2.200 0.991 ± 0.001 57.073 ± 5.914 0.990 ± 0.001 13.111 ± 2.470 0.991 ± 0.002
0.01 RAPS+TTA-Learned 31.248 ± 2.177 0.990 ± 0.001 53.195 ± 4.884 0.990 ± 0.001 14.045 ± 1.323 0.991 ± 0.002

0.05 Top-1 1.000 ± 0.000 0.761 ± 0.002 1.000 ± 0.000 0.766 ± 0.001 1.000 ± 0.000 0.804 ± 0.008
0.05 Top-5 5.000 ± 0.000 0.928 ± 0.001 5.000 ± 0.000 0.915 ± 0.001 5.000 ± 0.000 0.959 ± 0.003
0.05 RAPS 5.637 ± 0.357 0.951 ± 0.002 7.991 ± 1.521 0.954 ± 0.002 3.624 ± 0.361 0.955 ± 0.007
0.05 RAPS+TTA-Avg 5.318 ± 0.113 0.951 ± 0.001 7.067 ± 0.344 0.952 ± 0.002 3.116 ± 0.210 0.954 ± 0.007
0.05 RAPS+TTA-Learned 4.889 ± 0.168 0.952 ± 0.001 6.682 ± 0.447 0.954 ± 0.002 3.571 ± 0.576 0.957 ± 0.007

0.10 Top-1 1.000 ± 0.000 0.761 ± 0.002 1.000 ± 0.000 0.766 ± 0.001 1.000 ± 0.000 0.804 ± 0.008
0.10 Top-5 5.000 ± 0.000 0.928 ± 0.001 5.000 ± 0.000 0.915 ± 0.001 5.000 ± 0.000 0.959 ± 0.003
0.10 RAPS 2.548 ± 0.074 0.906 ± 0.004 2.914 ± 0.116 0.907 ± 0.003 2.038 ± 0.153 0.919 ± 0.014
0.10 RAPS+TTA-Avg 2.470 ± 0.071 0.905 ± 0.005 2.740 ± 0.026 0.908 ± 0.002 1.780 ± 0.139 0.912 ± 0.014
0.10 RAPS+TTA-Learned 2.312 ± 0.054 0.905 ± 0.004 2.625 ± 0.043 0.909 ± 0.003 1.893 ± 0.187 0.919 ± 0.016

Table S6. Comparison to Top-1 and Top-5 baselines. Results comparing performance against Top-K baselines. In each setting, conformal
prediction produces either smaller set sizes, higher coverage, or both compared to the Top-K baselines.

Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet CUB-Birds ImageNet CUB-Birds

0.01 RAPS+TTA-Learned+Focal 32.612 ± 3.799 13.416 ± 1.991 31.230 ± 1.510 15.503 ± 2.364
0.01 RAPS+TTA-Learned+Conformal 32.257 ± 3.608 13.776 ± 2.198 31.716 ± 2.078 14.432 ± 2.184
0.01 RAPS+TTA-Learned+CE 31.248 ± 2.177 14.045 ± 1.323 32.702 ± 2.409 13.803 ± 1.734
0.05 RAPS+TTA-Learned+Focal 4.906 ± 0.195 3.194 ± 0.202 4.956 ± 0.239 3.313 ± 0.331
0.05 RAPS+TTA-Learned+Conformal 4.867 ± 0.122 3.302 ± 0.312 4.996 ± 0.405 3.412 ± 0.406
0.05 RAPS+TTA-Learned+CE 4.889 ± 0.168 3.571 ± 0.576 5.040 ± 0.176 3.290 ± 0.186
0.10 RAPS+TTA-Learned+Focal 2.363 ± 0.085 1.791 ± 0.102 2.308 ± 0.045 1.860 ± 0.131
0.10 RAPS+TTA-Learned+Conformal 2.308 ± 0.068 1.865 ± 0.163 2.330 ± 0.072 1.868 ± 0.122
0.10 RAPS+TTA-Learned+CE 2.312 ± 0.054 1.893 ± 0.187 2.362 ± 0.065 1.840 ± 0.106

Table S7. Alternate training objectives. Results across datasets for two augmentation policies and three coverage specifications using a
focal loss. We set � to be 1, in line with prior work [14]. Each entry corresponds to the average prediction set size across 10 calibration/test
splits. Both the focal and conformal loss do not outperform the cross-entropy loss; for simplicity, we report all results using the cross-
entropy loss.

Figure S2. Impact of augmentation policy size. We see that larger policy sizes translate to a greater improvement (in terms of the ratio of
average prediction set sizes using RAPS+TTA-Learned to average prediction set sizes using RAPS alone) for ↵ = .05. For ↵ = .01, there
is no clear trend.



Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 RAPS 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.01 RAPS+TTA-Avg 0.991 ± 0.001 0.990 ± 0.001 0.991 ± 0.002 0.990 ± 0.001 0.990 ± 0.001 0.991 ± 0.002
0.01 RAPS+TTA-Learned 0.990 ± 0.001 0.990 ± 0.001 0.991 ± 0.002 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.002
0.05 RAPS 0.951 ± 0.002 0.954 ± 0.002 0.955 ± 0.007 0.951 ± 0.002 0.954 ± 0.002 0.955 ± 0.007
0.05 RAPS+TTA-Avg 0.951 ± 0.001 0.952 ± 0.002 0.954 ± 0.007 0.951 ± 0.001 0.953 ± 0.003 0.957 ± 0.004
0.05 RAPS+TTA-Learned 0.952 ± 0.001 0.954 ± 0.002 0.957 ± 0.007 0.951 ± 0.002 0.952 ± 0.002 0.956 ± 0.007
0.10 RAPS 0.906 ± 0.004 0.907 ± 0.003 0.919 ± 0.014 0.906 ± 0.004 0.907 ± 0.003 0.919 ± 0.014
0.10 RAPS+TTA-Avg 0.905 ± 0.005 0.908 ± 0.002 0.912 ± 0.014 0.905 ± 0.004 0.908 ± 0.002 0.915 ± 0.010
0.10 RAPS+TTA-Learned 0.905 ± 0.004 0.909 ± 0.003 0.919 ± 0.016 0.907 ± 0.004 0.908 ± 0.003 0.913 ± 0.011

Table S8. Comparison of achieved coverage. Coverage values for RAPS, RAPS+TTA-Avg, and RAPS+TTA-Learned across datasets and
coverage values. RAPS+TTA-Learned never decreases the coverage achieved by RAPS alone, and in some cases, improves it significantly
(as in the case of ImageNet and iNaturalist).

Expanded Aug Policy Simple Aug Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 RAPS 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.01 RAPS+TTA-Avg 0.991 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.01 RAPS+TTA-Learned 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.05 RAPS 0.951 ± 0.002 0.952 ± 0.002 0.952 ± 0.002 0.951 ± 0.002 0.952 ± 0.002 0.952 ± 0.002
0.05 RAPS+TTA-Avg 0.951 ± 0.001 0.951 ± 0.001 0.952 ± 0.002 0.951 ± 0.001 0.952 ± 0.002 0.952 ± 0.002
0.05 RAPS+TTA-Learned 0.952 ± 0.001 0.952 ± 0.002 0.952 ± 0.002 0.951 ± 0.002 0.952 ± 0.002 0.952 ± 0.002
0.10 RAPS 0.906 ± 0.004 0.906 ± 0.004 0.906 ± 0.002 0.906 ± 0.004 0.906 ± 0.004 0.906 ± 0.002
0.10 RAPS+TTA-Avg 0.905 ± 0.005 0.905 ± 0.002 0.908 ± 0.002 0.905 ± 0.004 0.908 ± 0.004 0.910 ± 0.002
0.10 RAPS+TTA-Learned 0.905 ± 0.004 0.907 ± 0.003 0.911 ± 0.002 0.907 ± 0.004 0.908 ± 0.004 0.910 ± 0.002

Table S9. Comparison of coverage across base classifiers. Coverage values for TTA variants of conformal prediction compared to RAPS
alone, across different base classifiers on ImageNet. TTA-Learned preserves coverage across all comparisons and significantly improves
upon the achieved coverage using ResNet-101 with RAPS (granted, the magnitude of this improvement is small).

Alpha Method ImageNet iNaturalist CUB-Birds

0.01 RAPS 0.0112 ± 0.0043 0.0207 ± 0.0043 0.0076 ± 0.0031

0.01 RAPS+TTA-Learned 0.0113 ± 0.0067 0.0247 ± 0.0027 0.0046 ± 0.0026

0.05 RAPS 0.2134 ± 0.0348 0.0609 ± 0.0217 0.0112 ± 0.0105

0.05 RAPS+TTA-Learned 0.3338 ± 0.0994 0.0899 ± 0.0520 0.0350 ± 0.0412

0.10 RAPS 0.1318 ± 0.0696 0.0852 ± 0.0151 0.2218 ± 0.1260

0.10 RAPS+TTA-Learned 0.3198 ± 0.0977 0.1008 ± 0.0058 0.1931 ± 0.1208

Table S10. Effect of test-time augmented conformal prediction on adaptivity. We show results in the context of ResNet-50 and RAPS,
across several coverage guarantees. We compute size-stratified coverage violation (SSCV) for each run as described in Sec. 5, and report
the mean and standard deviation of SSCV across runs here. Test-time augmentation does not significantly diminish adaptivity at each
coverage guarantee considered (assessed via a two-sample t-test, p > 0.05).



Figure S3. Robustness to size of dataset used to train test-time augmentation policy. We plot the percentage of data used to train
the TTA policy on the x-axis and the average prediction set size on the y-axis. Error bars describe variance over 10 random splits of
the calibration and test set. We can make two observations: 1) as the data used to train the TTA policy increases and the data used to
estimate the conformal threshold decreases, variance in performance grows and 2) across a wide range of data splits, learned TTA policies
(green) introduce improvements to achieved prediction set sizes compared to the original probabilities (gold). These results also suggest
that relatively little training data is required to learn a useful test-time augmentation policy; in this case, 2-3 images per class, or 10% of
the available labeled data.

Figure S4. Impact of calibration set size. We plot the relationship between calibration set size and average prediction set size across
two values of alpha, two augmentation policies, and two datasets (ImageNet and CUB-Birds). For ImageNet, larger calibration set sizes
correlate with larger and more consistent improvements from the addition of TTA, where the improvement flattens out for calibration set
sizes larger than 50%, or 12,500 images (12-13 per class). TTA does appear to be able to improve average prediction set size even with a
calibration set size of 1,250 (5% of original ImageNet calibration set size). For CUB-Birds, a dataset on which TTA does not perform as
well, we see that TTA performs comparably to RAPS alone the larger the calibration set.



↵ Method ImageNet (Expanded) ImageNet (Simple)

0.01 RAPS 52.332 ± 8.970 52.332 ± 8.970
0.01 RAPS+TTA-Avg 45.604 ± 1.515 42.431 ± 1.516
0.01 RAPS+TTA-Learned 40.872 ± 1.377 40.843 ± 1.707

0.05 RAPS 8.872 ± 0.417 8.872 ± 0.417
0.05 RAPS+TTA-Avg 8.304 ± 0.322 7.945 ± 0.861
0.05 RAPS+TTA-Learned 7.723 ± 0.916 7.609 ± 1.027

0.10 RAPS 3.677 ± 0.104 3.677 ± 0.104
0.10 RAPS+TTA-Avg 3.480 ± 0.056 3.298 ± 0.069
0.10 RAPS+TTA-Learned 3.321 ± 0.289 3.348 ± 0.275

Table S11. Replicated results on MobileNetV2. We observe trends similar to those reported to in the main text in the context of
MobileNetV2. In short, RAPS combined with a learned test-time augmentation policy (RAPS+TTA-Learned) produces the smallest set
sizes across the considered coverage guarantees (↵ 2 {0.01, 0.05, 0.10}) and augmentation policies.

Figure S5. Class-specific performance for ImageNet, for a coverage of 95% ↵ = .05. Using the expanded augmentation policy
RAPS+TTA-Learned produces a noticeable shift in class-average prediction set sizes to the left. There is a significant correlation between
original prediction set size and improvements from TTA (middle) and between class difficulty and improvements from TTA (right).

Figure S6. Class-specific performance for iNaturalist, for ↵ = .01 (top) and ↵ = .05 (bottom). We see a consistent relationship between
TTA improvements and original class-average prediction set size (middle) and class difficulty (right). Estimates of class-specific accuracy
on iNaturalist are quite noisy because there are 10 images per class (which produces distinct accuracy bands).



Figure S7. Class-specific performance for CUB-Birds, for ↵ = .01 (top) and ↵ = .05% (bottom). These graphs show an example for
which TTA-Learned does not produce improvements in average prediction set size (computed across all examples). Interestingly, behavior
on a class-specific level is different between ↵ = .01 and ↵ = .05. For ↵ = .01, results are consistent with other datasets: classes which
originally receive large prediction set sizes and classes which are more difficult benefit most from the addition of TTA. For ↵ = .05, the
exact opposite is true. While a majority of classes are hurt by TTA, classes that benefit from TTA are easier and receive smaller prediction
set sizes.
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