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A. Training & Dataset Details
A.1. Overview
We deploy FinePhys using PyTorch, and the training pro-
cess consists of four steps: ✁ Pre-training the skeletal
heatmap encoder on the HumanArt [31] dataset; ✂ Pre-
training the 2D-to-3D module and the PhysNet module on
Human3.6M [30] and AMASS [45] datasets; ✃ Fine-tune
the 2D projection module and PhysNet module using the
online detected 2D skeletons detected from FineGym [60];
✄ Jointly fine-tuning the U-Net [56], PhysNet, and 2D pro-
jection modules on FineGym. The first three steps of train-
ing are conducted on a Linux (Ubuntu) machine with 4
Nvidia 4090 GPUs within 48 hours, while step 4 utilizes
two NVIDIA L20 GPUs and completes within 12 hours.

Across all experiments, we apply a linear noise sched-
uler with 1,000 timesteps, linearly increasing the beta val-
ues from 0.00085 to 0.012 to progressively reduce noise
during training. The U-Net backbone incorporates a motion
module featuring temporal self-attention layers and posi-
tional encoding operating at resolutions [1, 2, 4, 8], enabling
multi-scale temporal dynamics capture. The motion mod-
ule is configured with eight attention heads, a single trans-
former block, and dual temporal self-attention layers to ef-
fectively model temporal dependencies. To stabilize train-
ing, the module parameters are zero-initialized. We incor-
porate a Low-Rank Adaptation (LoRA) [27] module with
a rank of 64 and a dropout rate of 0.1, facilitating efficient

adaptation of the model’s spatial and temporal layers while
minimizing the number of trainable parameters. Training
utilizes the Adam optimizer with an initial learning rate of
5 → 10→4 and a weight decay of 1 → 10→2. Additionally,
gradient checkpointing is enabled to optimize GPU mem-
ory usage during training.

A.2. HumanArt Pre-training
Initially, we train the skeletal heatmap encoder on the Hu-
manArt dataset, a large-scale image collection containing
50K images with accurate pose and text annotations across
various scenarios. We leverage the real-human subset, com-
prising 8,750 images with corresponding 2D skeleton an-
notations. The original COCO-format skeletons are con-
verted to the Human3.6M format, both with 17 keypoints,
and subsequently processed into limb heatmaps following
the PoseConv3D approach [15]. We employ Stable Diffu-
sion v1.5 [55] as the spatial generator and keep it frozen
during training.

A.3. Human3.6M and AMASS Pre-training
To pre-train the 2D-to-3D module and PhysNet, we utilize
diverse and realistic 3D human motion data from the Hu-
man3.6M and AMASS datasets. Both provide 3D pose an-
notations essential for skeleton modeling. We use 2D-3D
skeleton pairs from Human3.6M as prompt pairs and pre-
train both modules for 10 epochs.

A.4. FineGym Fine-tuning
For fine-tuning FinePhys, we use the FineGym [60] dataset,
selecting three subsets with distinct motion dynamics: FX-
JUMP, FX-TURN, and FX-SALTO. FX-JUMP includes 11
classes (IDs 6–16), FX-TURN comprises 7 classes (IDs 17–
23), and FX-SALTO contains 17 classes (IDs 24–40), as
detailed in Tab. 3. Example videos and poses are illustrated
in Fig. 8.

We generate captions for each video by prompting GPT-
4 [1] to transform existing textual descriptions into stan-
dardized prompts. The instruction provided to GPT-4 was:
“For each gymnastics move described in the labels below,
write a detailed description as if explaining to someone who
is unfamiliar with gymnastics.” For example, the label “2
turns on one leg with free leg optional below horizontal” is
converted to “A person executes two complete turns while
balancing on one leg, allowing the lifted leg to remain below
hip level or in any chosen position beneath the horizontal
line throughout the turning sequence.” This augmentation
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FX-JUMP-Class 6 : Switch leap with 0.5 turn

FX-TURN-Class 18 : 2 turn in tuck stand on one leg, free leg straight throughout turn

FX-SALTO-Class 24 : Arabian double salto tucked

switch leap with 0.5 turn

Figure 8. Example videos from FX-JUMP, FX-TURN and FX-SALTO. Each sample video has 16 frames, and the corresponding 2D
skeleton sequence is also represented.

enhances the model’s comprehension of textual prompts, fa-
cilitating subsequent video generation tasks.

With the dataset augmented by extended descriptions,
we first fine-tune the PhysNet and 2D projection modules
for 10,000 training steps using online-detected 2D skele-
tons from FineGym. Subsequently, we jointly fine-tune the
U-Net, PhysNet, and 2D projection modules for an addi-
tional 8,000 training steps.

B. Elaboration on Evaluation Metrics
In this section, we elaborate on the details of evaluation
metrics used in our project. First, we discuss the limitation
of the original CLIP-SIM metric [51] and the corresponding
improved CLIP-SIM*. Then we introduce the details of the
user study as well as other metrics.

B.1. CLIP-SIM Metrics and Limitations
We analyze the CLIP-SIM metric based on three aspects:
semantic consistency, domain consistency, and temporal
consistency [22]. Below, we detail each aspect and discuss
their limitations.
✁ Semantic Consistency measures the alignment be-
tween textual prompts and the generated video frames.
Specifically, for a given text prompt P and a generated
video Ṽ with T frames, the semantic consistency score is
computed as the average CLIP similarity between P and
each frame of Ṽ :

CLIPtext(P, Ṽ ) =
1

T

T∑

t=1

CLIP(P, Ṽ (t)). (27)

Limitations of CLIPtext: The original semantic consis-
tency metric struggles with fine-grained action labels due
to semantic ambiguity and entanglement in the CLIP em-

bedding space. As illustrated in Fig. 9, while the metric
performs adequately for coarse-grained action categories
(e.g., those from UCF101 [64]), it fails with FineGym labels
where the embedded vectors of specific categories over-
lap significantly, rendering the metric ineffective for distin-
guishing between similar fine-grained actions.

✂ Domain Consistency assesses the similarity between
generated video frames and reference images generated by
an open-sourced image generation model, such as Stable
Diffusion [55]. For a reference image I and a generated
video Ṽ with T frames, the domain consistency score is
calculated as:

CLIPdomain(I, Ṽ ) =
1

T

T∑

t=1

CLIP(I, Ṽ (t)). (28)

Limitations of CLIPdomain: The domain consistency met-
ric is unreliable for fine-grained actions because reference
images generated by Stable Diffusion may not accurately
reflect the nuances of specific actions or their dynamics, as
shown in Fig. 10. Additionally, comparing the generated
results in Fig.18, higher domain scores do not necessarily
correspond to better representations of fine-grained videos.
For instance, T2V-Zero generates nonsensical content that
still achieves a higher domain score than AnimateDiff, and
VideoCrafter’s highest-scoring results often contain visible
artifacts and limb inaccuracies.

✃ Temporal Consistency evaluates the smoothness of
transitions between frames in a generated video by comput-
ing the average CLIP similarity between randomly selected
pairs of frames. Given a generated video Ṽ and a set of N
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Table 3. Categories of FX-JUMP, FX-TURN, and FX-SALTO
from Gym99.

FX-JUMP from Gym99

Class ID Category

6 0 Switch leap with 0.5 turn
7 1 Switch leap with 1 turn
8 2 Split leap with 1 turn
9 3 Split leap with 1.5 turn or more

10 4 Switch leap (leap forward with leg change to
cross split)

11 5 Split jump with 1 turn
12 6 Split jump (leg separation 180 degree parallel to

the floor)
13 7 Johnson with additional 0.5 turn
14 8 Straddle pike or side split jump with 1 turn
15 9 Switch leap to ring position
16 10 Stag jump

FX-TURN from Gym99

Class ID Category

17 0 2 turn with free leg held upward in 180 split po-
sition throughout turn

18 1 2 turn in tuck stand on one leg, free leg straight
throughout turn

19 2 3 turn on one leg, free leg optional below hori-
zontal

20 3 2 turn on one leg, free leg optional below hori-
zontal

21 4 1 turn on one leg, free leg optional below hori-
zontal

22 5 2 turn or more with heel of free leg forward at
horizontal throughout turn

23 6 1 turn with heel of free leg forward at horizontal
throughout turn

FX-SALTO from Gym99

Class ID Category

24 0 Arabian double salto tucked
25 1 Salto forward tucked
26 2 Aerial walkover forward
27 3 Salto forward stretched with 2 twist
28 4 Salto forward stretched with 1 twist
29 5 Salto forward stretched with 1.5 twist
30 6 Salto forward stretched, feet land together
31 7 Double salto backward stretched
32 8 Salto backward stretched with 3 twist
33 9 Salto backward stretched with 2 twist
34 10 Salto backward stretched with 2.5 twist
35 11 Salto backward stretched with 1.5 twist
36 12 Double salto backward tucked with 2 twist
37 13 Double salto backward tucked with 1 twist
38 14 Double salto backward tucked
39 15 Double salto backward piked with 1 twist
40 16 Double salto backward piked

frame pairs P, the temporal consistency score is:

CLIPsmooth(Ṽ ) =
1

N

∑

(i,j)↑P
CLIP(Ṽ (i), Ṽ (j)). (29)

Label Embedding Distribution of UCF101 and FineGym after PAC

Figure 9. Limitations of semantic consistency in original CLIP-
SIM. We utilize CLIP models to obtain the embedded textual
features and Probably Approximately Correct (PAC) for dimen-
sionality reduction. The distribution of embedded category labels
from FX-JUMP, FX-TURN and FX-SALTO as well as UCF101 is
shown. Label features from FineGym are entangled, while those
from UCF101 are clearly seperated.

Limitations of CLIPsmooth: The original temporal con-
sistency metric is unsuitable for fine-grained human ac-
tions, which inherently involve rapid and significant tempo-
ral changes. As demonstrated in Fig.17, models like T2I-
Zero that generate predominantly static scenes paradoxi-
cally achieve the highest temporal consistency scores. This
indicates that the metric fails to capture the dynamic na-
ture of fine-grained actions, instead rewarding unnaturally
smooth or static video sequences.

B.2. The Improved CLIP-SIM* Metrics

To overcome the aforementioned limitations, we propose
an enhanced version of CLIP-SIM, termed CLIP-SIM*,
specifically designed for evaluating fine-grained human ac-
tion videos. CLIP-SIM* refines the calculations of domain
consistency and temporal consistency by adopting a data-
driven approach, while leaving the original semantic con-
sistency as a minor metric.

✁ Improved Domain Consistency. Instead of relying on
reference images generated by Stable Diffusion, CLIP-
SIM* leverages ground-truth videos to select more rele-
vant reference images. Specifically, we randomly choose
ground-truth videos and extract three representative frames
(start, middle, end) from each to form the reference set
{Ij}Nj=1, as shown in the right part of Fig. 10.

The domain consistency score is then computed as the
average CLIP similarity between each generated frame and
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Improved CLIP-SIM*
New Domain Reference Image 

Original CLIP-SIM
Domain Image

First Frame Mid Frame End Frameby Stable Diffusion 1.5

“switch leap (leap forward with leg change to cross split”FX-JUMP Class-10

“2 turn with free leg held upward in 180 split position throughout turn”FX-TURN Class-17

“salto backward stretched with 2 twist”FX-SALTO Class-33

Figure 10. Domain image of original CLIP-SIM and the
improved CLIP-SIM* from FX-JUMP, FX-TURN and FX-
SALTO. Reference images generated by Stable Diffusion may not
accurately reflect the nuances of specific actions or their dynam-
ics (Original CLIP-SIM), while CLIP-SIM* randomly selects one
video from the given class and extracts three representative frames
(start, middle, end) to form a more reasonable reference set.

all reference images:

CLIP↓
text(Ṽ , {Ij}) =

1

N
· 1
T

T∑

t=1

N∑

j=1

CLIP(Ṽ (t), Ij).

(30)
This approach ensures that the reference images are con-
textually and semantically aligned with the fine-grained ac-
tions being evaluated, thereby providing a more accurate
measure of domain consistency.

✂ Improved Temporal Consistency. To better assess the
temporal dynamics of fine-grained actions, we propose an
improved temporal consistency metric within CLIP-SIM*,
which preserves the temporal changing patterns inherent
to specific action classes. Instead of enforcing smooth-
ness across all frames, CLIP-SIM* compares the gener-
ated video with multiple reference videos from the same
action category. For each action label, we select M ref-
erence videos V Ref and uniformly sample Ki frames from
each reference video, where Ki ↑ {1, 2, 4, 8, 16}. The tem-
poral consistency score is then calculated as:

CLIP↓
smooth(Ṽ , V Ref) =

M∑

l=1

Ki∑

k=1

CLIP(Ṽ (k), V Ref
l (k)).

(31)

This modification allows CLIP↓
smooth to effectively measure

whether the generated video replicates the temporal dynam-
ics of specific fine-grained actions, addressing the short-
comings of the original temporal consistency metric, as
shown in Fig.19.

B.3. Details of User Study
As discussed in the main paper, we evaluate the generation
results through a user study, which provides a more reliable
assessment. In practice, each participant is presented with a
series of text-video, image-video, and video-video pairs and
asked to rate semantic consistency, temporal consistency,
and domain consistency on a scale from 1 to 5. The layout
of the user study interface is illustrated in Fig. 16.

Specifically, we developed a questionnaire that tested all
baseline models alongside our results. Each video result
was accompanied by the same textual descriptions, refer-
ence images, and reference videos. Participants were in-
structed to objectively evaluate the similarity of the video
results to this reference information. To ensure impartial-
ity, we omitted any details about the models used and dis-
tributed the questionnaire to 20 professionals unfamiliar
with our work, thereby obtaining objective data.

B.4. Other Metrics
PickScore. PickScore [36] trains a scoring function s(·)
based on the CLIP framework using the large-scale user
preferences dataset Pick-a-Pic to score the quality of gener-
ated images. Its performance in assessing generated images
surpasses that of other evaluation metrics, even outperform-
ing expert human annotators.

Given a text prompt P and an image I as input,
PickScore calculates the score of the generated image as
follows:

s(P, I) = Etxt(P ) · Eimg(I) · ω (32)
where Etxt and Eimg represent the text encoder and image
encoder, respectively, and ω denotes the learned scalar tem-
perature parameter of CLIP.

While PickScore was originally developed for image
evaluation, we have extended it to the domain of video eval-
uation. Specifically, given a text prompt P and a gener-
ated video Ṽ , we compute the average PickScore across all
frames of the video:

PickScore(P, Ṽ ) =
1

T

T∑

t=1

s(P, Ṽ (t)) (33)

where Ṽ (t) denotes the t-th frame of the generated video,
and T is the total number of frames.

Fréchet Video Distance (FVD). FVD [67] is a widely
used metric for evaluating video generation models. In
the domain of temporal analysis [13, 14], it is highly cor-
related with the visual quality of generated samples and
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Figure 11. Visualization of different pose sequences on the class “switch leap with 0.5 turn” from the FX-Jump subset, demonstrating
the complete transformation process within our framework.

assesses temporal consistency. FVD utilizes a pre-trained
video recognition model to extract features from both real
and generated videos, forming two sets of features, and then
computes the mean and covariance matrices of these two
sets. The FVD is represented as the Fréchet distance be-
tween these two distributions:

FVD = ↓µ↔ µ̃↓2 + Tr(!+ !̃↔ 2(!!̃)
1
2 ) (34)

where µ and ! are the mean and covariance matrix of the
real video feature set, while µ̃ and !̃ are the mean and co-
variance matrix of the generated video feature set. However,
as observed in [37], unsatisfactory video generation results
could achieve a higher FVD score, challenging its reliabil-
ity.

C. Additional Illustration & Analysis

C.1. Elaboration on Euler-Lagrange Equations

In the main paper, we use the following equation to repre-
sent the process in Lagrangian Mechanics:

M(q)q̈ = J(q, q̇)↔ C(q, q̇), (35)
which is a common form used in robotics and dynamics,
known as the equation of motion in terms of mass matrix
M(q), generalized forces J(q, q̇), and Coriolis and centrifu-
gal forces C(q, q̇). Here we elaborate on its relation with the
original Euler-Lagrange Equations, i.e.:

εL

εqi
(t, q(t), q̇(t))↔ d

dt

εL

εq̇i
(t, q(t), q̇(t)) = 0. (36)

Assume the kinetic energy of the system is given by T =
1
2 q̇

TM(q)q̇, and the potential energy is typically a function
of the generalized coordinates q denoted by V = V (q), then

the Lagrangian is defined as:

L = T ↔ V =
1

2
q̇TM(q)q̇ ↔ V (q). (37)

Then we calculate ωL
ωqi and ωL

ωq̇i :

εL

εqi
= ↔εV

εqi
+

1

2
q̇T

εM(q)

εqi
q̇ (38)

d

dt

(
Mij(q)q̇

j
)
= q̇j

εMij

εqk
q̇k +Mij(q)q̈

j (39)

and substitute these results into the Euler-Lagrange equa-
tion:

↔εV

εqi
+

1

2
q̇T

εM(q)

εqi
q̇ ↔

(
q̇j

εMij

εqk
q̇k +Mij(q)q̈

j

)
= 0,

(40)

where ↔ ωV
ωqi represents the partial derivative of the potential

energy with respect to the coordinates, i.e., the generalized
force, i.e., J(q, q̇). Thus we could obtain the following for-
mulation:

M(q)q̈ = J(q, q̇)↔ C(q, q̇). (41)

C.2. Visualization of the Pose Modality
Recall that our FinePhys framework fully leverages skeletal
data through a sequence of specialized modules: (1) The on-
line pose estimator generates detected 2D poses, denoted as
S2D

detect; (2) Then the in-context-learning module processes
and transforms them into S3D

dd ; (3) After the PhysNet mod-
ule we obtain S3D

pp , (4) and finally we re-projected the aver-
age of S3D

dd and S3D
pp into 2D space to obtain S2D

re-proj.
Fig.11, Fig. 12, Fig. 13 present additional visualizations

of these pose sequences, illustrating the entire transforma-
tion process within our framework. Due to the large vari-
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Class17: 2 turn with free leg held upward in 180 split position throughout turn

Original 
Video

Sdet2D

Sdd
3D

Spp3D

Sre−proj2D

Figure 12. Visualization of different pose sequences on the class “2 turn with free leg held upward in 180 split position throughout turn”
from the FX-Turn subset, demonstrating the complete transformation process within our framework.

ation and high complexity of fine-grained actions, the de-
tected 2D poses (S2D

detect) exhibit significant misidentifica-
tions across joints throughout the video. The in-context
learning module improves these poses, enabling S3D

dd to
partially reconstruct missing or distorted skeletons in each
frame. However, in cases of severe distortion, the data-
driven approach becomes unstable, resulting in S3D

dd be-
ing noisy and physically implausible. The PhysNet mod-
ule mitigates this issue by producing S3D

pp , which is more
stable and constrained, effectively correcting deviations in
S3D
dd . Consequently, the averaged and re-projected 2D poses

(S2D
re-proj) show substantial improvements compared to the

original detections, validating the efficacy of our approach.

C.3. More Generated Results and Comparison
In this section, we present additional qualitative results to
demonstrate the effectiveness of our proposed FinePhys
framework in generating fine-grained human action videos.

We compare the generated results of FinePhys with
those of baseline methods across three action subsets: FX-
JUMP, FX-TURN, and FX-SALTO, as illustrated in Fig. 17,
Fig. 18, and Fig. 19, respectively. The key observations
are as follows: ✁ Our CLIP-SIM* metric more accurately
reflects the quality of video generation compared to the
original CLIP-SIM metric. For example, methods such
as Follow-Your-Pose and Latte achieve high scores on the
original Domain Score, yet the generated actions exhibit
significant inconsistencies with physical laws. Similarly,
T2V-zero attains the highest score on the Smooth Score by

generating continuous identical frames, which lack realis-
tic motion dynamics. In contrast, CLIP-SIM* scores align
more closely with human intuition, providing a more reli-
able assessment of video quality.

✂ FinePhys consistently outperforms other baseline
methods across different action categories. Baseline meth-
ods that lack guidance from physical information often pro-
duce unrealistic limb movements. For instance, Latte dis-
plays multiple limb artifacts in Class 14, and VideoCraft
shows unrealistic levitation in Class 20 . In contrast, Fine-
Phys incorporates physics modeling through the PhysNet
module, resulting in more natural and coherent actions that
adhere to real-world physical constraints.

C.4. Limitation and Future Work.
Intractable Cases. Although FinePhys outperforms its
competitors in generating results, significant challenges
remain unresolved. High-speed motions and substantial
body deformations pose considerable difficulties, particu-
larly when they are intertwined, as seen in salto routines.
Generating fine-grained actions such as double salto back-
ward stretched is currently intractable, as shown in Fig. 14,
let alone accurately distinguishing between actions like
”salto backward stretched with 2.5 twist”, ”salto backward
tucked with 1 twist”, and ”double salto backward tucked
with 1 twist”. We encourage future research efforts to ad-
dress these complex scenarios.

Reliance on Initial Pose Detection. FinePhys fully uti-
lizes the pose modality; however, the initial step of the
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Class33: salto backward stretched with 2 twist

Original 
Video

Sdet2D

Sdd
3D

Spp3D

Sre−proj2D

Figure 13. Visualization of different pose sequences on the class “salto backward stretched with 2 twist” from the FX-Salto subset,
demonstrating the complete transformation process within our framework.

Failure Cases On Class 31: double salto backward stretched

Reference Video

Our Failure Result 

Figure 14. Limitations in intractable cases. For class 31: double
salto backward stretched, FinePhys fails to generate a double salto,
resulting in only a single flip being observed.

pipeline involves online 2D pose estimation. Due to the
complexity of fine-grained human actions, we observed that
the online pose estimator can occasionally fail completely,
resulting in no detected 2D poses, as shown in Fig. 15. In
such cases, the initial poses rely entirely on the pose prior
used in the in-context learning module. Even if we can re-
store the human structure spatially, no motion is present. In
future work, we will consider selecting appropriate scenar-
ios to evaluate our current FinePhys implementations and
explore additional modalities (e.g., optical flow) to address
this issue.

Focus on Fine-grained Human Actions. Although video
generation techniques have been extensively explored and
improved, applying these methods to the specific and chal-
lenging domain of fine-grained human actions can reveal
the limitations of current approaches and inspire future ad-

Class14: straddle pike or side split jump with 1 turn

Detect 2D

Re-projected 2D

𝑺𝑺𝒅𝒅𝒅𝒅𝟑𝟑𝟑𝟑

𝑺𝑺𝒑𝒑𝒑𝒑𝟑𝟑𝟑𝟑

Origin Video

Figure 15. Negative Impact of Initial Pose Detection.. Current
online pose estimators may fail completely due to the complexity
of fine-grained human actions, which affects subsequent process-
ing stages in the FinePhys framework. Even when the physical
structure of the human body is spatially restored, the intricate mo-
tion dynamics cannot be accurately reconstructed, resulting in un-
realistic or static video outputs.

vancements [8, 59, 61]. In this work, we select three fine-
grained human action subsets, each encoding distinct mo-
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tion dynamics: ✁ Turning Focuses on precise rotational
movements; ✂Jumping emphasizes rapid vertical motion
combined with moderate rotations; ✃ While Salto involves
complex aerial maneuvers with multiple twists and flips,
and is the most challenging. By conducting comprehensive
quantitative comparisons alongside qualitative analyses, we
aim to draw greater attention to the challenges inherent in
generating fine-grained human actions. This focused eval-
uation not only highlights the strengths and weaknesses of
existing methods but also provides valuable insights for fu-
ture research and development in this domain.

Further Exploration on Physics. In future work, we aim
to enhance the integration of physics modeling in video
generation from diverse perspectives, such as collision dy-
namics, fluid interactions, etc. Currently, generating fine-
grained human actions restricts the model’s ability to focus
solely on motion dynamics, as it must also account for the
spatial structure of the human body [9, 65, 73, 74]. To ad-
dress this complexity, we plan to simplify scenes by utiliz-
ing basic geometric shapes for environmental interactions,
thereby reducing model complexity while maintaining a
robust incorporation of physical principles. Additionally,
we will investigate the incorporation of physical laws into
video generation, which may involve developing new al-
gorithms or refining existing techniques to more accurately
simulate real-world physical behaviors.
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Figure 16. Display of the interface of User Study.
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Figure 17. Qualitative Results on FX-JUMP. FX-JUMP focuses on the motion continuity of the gymnastics’ body. Compared with other
baselines, our method demonstrates superior performance in understanding physical consistency.
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Figure 18. Qualitative Results on FX-TURN. FX-TURN focuses on the minor difference of the gymnastics’ body. Compared with other
baselines, our method demonstrates superior performance in understanding complex and fine-grained semantics, keeping the consistency
of bio-physical characteristics, and adhering to the physical principles.
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Figure 19. Qualitative Results on FX-SALTO. FX-SALTO demands gymnastics’s body rotates 360° around a horizontal axis with the
feet passing over the head, which is the most difficult in all of three sub-datasets in FineGym. Compared with other baselines, results in
our methods maintain better temporal consistency, more adhering to the bio-physical rules.
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