GREAT: Geometry-Intention Collaborative Inference for
Open-Vocabulary 3D Object Affordance Grounding
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A. Implementation Details
A.1. Method Details

We demonstrate dimensions and meanings of tensors in
the GREAT pipeline as shown in Tab. 1. For the im-
age branch, ResNet18 [4] is chosen as the feature extrac-
tor. The input image is randomly cropped and resized
to 224 x 224, producing image features with a shape of
F; € R512X7TX7 A 1x1 convolutional layer is applied to
reduce the feature dimension and the feature is flattened
to F; € R512X49 For the point branch, each input point
cloud contains 2048 points. We employ pointnet++ [11],
which consists of three set abstraction (SA) layers, to pro-
gressively extract multi-scale point cloud features. Within
each SA layer, Farthest Point Strategy (FPS) is used to sam-
ple points, with the sampling counts set to 512, 128, and 64.
Ultimately, this branch outputs point features represented
as F, € R?12x2048_ Detailed prompts on Multi-Head Af-
fordance Chain-of-Thought (MHACoT) reasoning are pre-
sented below.

— Prompt One: “Point out which part of the object in the
image interacts with the person. If this part is different
from the part of the object shown in the image that per-
forms the main function, point out the part of the object
that performs the main function shown in the image.”

— Prompt Two: “Explain why this part can interact from
the geometric structure of the object. Just give the final
result in one sentence.”

— Prompt Three: “Describe the interaction between ob-
Ject and the person in the image, including the interaction

Table 1. Tensors. The dimension and meaning of the tensors in
the pipeline.

Tensor ‘ Dimension Meaning
Fy 512 X 7Tx 7 image extractor output
Fy, 512 x 64 point cloud extractor output
T,, T, 1 x 512 object geometric knowledge feature
Tq, T, 3 x 512 affordance intention knowledge feature
F; 512 x 64 project F';, to a feature space
T; 512 x 1 project T, to a feature space
P, 512 x 64 fused point features by FP,TD
Fyp 512 x 2048 upsampled fused point features by P,
Fy; 512 x 16 fused image features by F;, T,
F. 512 x 2048 affordance feature representation
o) 2048 x 1 3D object affordance

type, the interaction part of the object, and the interaction
part of the person. ”

— Prompt Four: “List two interactions that describe ad-
ditional common interactions that the object can interact
with people, including the interaction type, the interaction
part of the object, and the interaction part of the person.

We connect the answers of Prompt One and Prompt Two,
as well as the answers of Prompt Three and Prompt
Four, to obtain object geometric knowledge feature T, €
R!*512 and affordance intention knowledge feature T, €
R3*512 through the text encoder ROBERTa [8].

A.2. Evaluation Metrics

We employ four evaluation metrics to assess performance:
AUC [9], alOU [12], SIM [13], and MAE [14]. A detailed
explanation of each metric is provided below:

— AUC [9]: AUC is a widely adopted metric for evaluating
saliency maps, treating them as binary classifiers across
varying thresholds. By computing the true and false pos-
itive rate at each threshold, it produces the ROC curve,
which captures the model’s classification performance.
In our work, AUC is utilized to evaluate the model’s
capability to differentiate between affordance and non-
affordance regions of an object with 2048 points.

— alOU [12]: TOU is a critical metric for assessing the sim-
ilarity between two regions, widely employed to quantify
the degree of overlap between predicted and ground truth
regions. Its range is [0, 1], where 1 indicates perfect over-
lap and O signifies no intersection. IOU is defined as the
ratio of the intersection area to the union area of the two



regions, formulated as:

Intersection Area
1 = 1
ou Union Area '’ S

The alOU is defined as the mean IOU value computed
over multiple thresholds, formulated as:

T
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where 7' denotes the number of thresholds.

— SIM [13]: SIM measures the similarity between the pre-
diction map (P) and the ground truth map (QP), formu-
lated as:

SIM(P,QP) =" min(P;,QP),
where Zpi = ZQZD =1

— MAE [14]: MAE is a widely used metric for evaluat-
ing models, quantifying the deviation between predicted
and true values. It is calculated by averaging the absolute
differences between the predicted values and the corre-
sponding true values, as formulated as dividing the total
error by N:

3)

N
1
MAE = — = il 4
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where y; denotes the ground truth, ¢; denotes the predic-
tion.

A.3. Training Details

In the fine-tuning process of MLLM, we exclusively fine-
tune the parameters of the injected learnable adapters [5],
while freezing the primary parameters of the InternVL [2].
The training is conducted out on two NVIDIA 3090 GPUs,
using a dataset of 7135 samples that are unseen in the test
sets across three different data settings. The model is trained
for 4460 iterations with a learning rate of 4e-5, a batch size
of 4, and a LoRA rank set to 16.

To ensure a fair comparison, we train our model and im-
plement all baseline methods under identical training set-
tings. Our model is built using the PyTorch framework and
optimized with the Adam [6] optimizer. The training epoch
is set to 65, with an initial learning rate of le-4 and a batch
size of 16. All training processes are conducted on two
NVIDIA 3090 GPUs. The image feature extractor lever-
ages pretrained parameters from ImageNet, the parameters
of text feature extractor are frozen, while the point cloud
feature extractor is trained from scratch. Furthermore, as
strict one-to-one pairing between images and point clouds

Table 2. Unseen Objects. The affordance and corresponding
number of images and point clouds for each object in the test set
under the Unseen Object setting.

Object Affordance | Image | Point
Scissors Cut, Grasp, Stab 130 | 410
Baseballbat Wrapgrasp 516 | 112
Mop Wrapgrasp, Clean 286 17

Clock Display 143 | 1009
Refrigerator Contain, Open 147 290
Bucket Contain, Lift 107 | 234
Motorcycle Ride 486 | 301
Fork Wrapgrasp, Stab 240 90
Skateboard Support 641 | 152
Laptop Display, Press 296 | 679
Kettle Contain, Grasp, Open, Pour | 280 524

Table 3. Unseen Affordances. The object and corresponding
number of images and point clouds for each affordance in the test
set under the Unseen Affordance setting.

Affordance | Object | Image | Point
Cut Scissors, Knife 366 | 425
Pour Bottle, Kettle, TrashCan, Mug | 435 | 2945
Pull Suitcase 181 20
Lay Bed 289 | 779
Carry Backpack, Surfboard 377 118
Listen Earphone 365 | 710

is not required, we adopt an online pairing strategy dur-
ing training. In each training step, a single image can be
paired with n point clouds, effectively augmenting the train-
ing sample size. Considering both training efficiency and
model performance, we set n = 2 in our implementation to
strike an optimal balance.

B. Dataset

We provide a detailed description of the dataset partition-
ing process. PIADv2 consists of 43 object categories and
24 affordance categories. To validate the effectiveness
of GREAT for object affordance grounding in an open-
vocabulary scenario, we divide the dataset into three par-
titions: Seen, Unseen Object and Unseen Affordance. In
Seen, all object and affordance categories in the test set are
identical to those in the training set. In Unseen Object,
the affordances remain consistent with the training set, but
several objects are excluded from the training set. The fol-
lowing eleven objects are selected as the test set for unseen
object: “Scissors”, “Baseballbat”, “Mop”, “Clock”, “Re-
frigerator”, “Bucket”, “Motorcycle”, “Fork”, “Skateboard”,
“Laptop”, “Kettle”. The ratio of object categories between



the training set and the test set is 32:11. The affordance cat-
egories corresponding to each unseen object, along with the
number of associated images and point clouds, are detailed
in the Tab. 2. Notably, a fixed one-to-one correspondence
is not required, as a single image can be paired with multi-
ple point clouds. In Unseen Affordance, the certain affor-
dances of object categories in the test set are not present in
the training set. Specifically, the following six affordances
are selected as the test set for unseen affordance: "Cut,"
“Pour”, “Pull”, “Lay”, “Carry”, “Listen”. Notably, the ear-
phone (which corresponds to the action “Listen”) and the
suitcase (which corresponds to the action “Pull”) are also
absent from the training set, further increasing the chal-
lenge for generalization. The ratio of affordace categories
between the training set and the test set is 18:6. The object
categories corresponding to each unseen affordance, along
with the number of associated images and point clouds, are
detailed in the Tab. 3.

C. Experiments
C.1. Details of Modular Baselines

We have selected two leading 3D object affordance ground-
ing methods, IAG [16] and LASO [7], which leverage either
the interaction image or the language guiding the interaction
to obtain additional contextual information. In addition, we
have chosen two of the top-performing image-point cloud
cross-modal learning methods compared in IAG, FRCNN
[15] and XMF [1] . These methods respectively extract fea-
tures from image and point cloud data and align or fuse the
extracted features. We reimplement the above four methods
across three data settings in PIADv2, where all compared
methods share the same feature extractor as our GREAT.

— Baseline: For the design of the baseline, we directly con-
nect the features output by the image and point cloud ex-
tractors, and then use the output head to predict the affor-
dance of 3D object point clouds, without any intermediate
steps to align features from different sources.

— FusionRCNN (FRCNN) [15]: This work tackles the
challenge of object recognition and localization caused by
the sparsity of point clouds in distant regions, proposing
a novel multi-modal two-stage approach. The method ef-
fectively integrates point cloud data and camera images in
the region of interest (Rol), adaptively combining sparse
LiDAR geometric information with dense camera texture
information within a unified attention mechanism.

— XMPFnet (XMF) [1]: This work explores the problem of
point cloud completion using edge information provided
by a single image and shape priors. By combining self-
attention and cross-attention mechanisms, it effectively
fuses features from two different modalities, integrating
the information from both modalities into a local latent
space. It avoids the complex point cloud reconstruction

Table 4. Evaluation Metrics in Unseen Affordance. Results of
each affordance type for all comparison methods in the unseen
affordance setting.

Setting  |Metrics| Carry Listen Lay Pour Cut Pull
AUC |57.39 48.57 69.45 59.96 39.55 93.61

Baseline alOU | 733 343 6.85 6.08 4.25 31.42
SIM | 0.237 0.152 0.324 0.184 0.105 0.348

MAE | 0.147 0.221 0.131 0.145 0.208 0.054

AUC |52.63 50.40 75.68 59.54 43.84 93.28

_.| aIOU | 539 323 10.70 6.17 4.62 29.58
FRCNNTI5] SIM | 0.178 0.157 0.411 0.179 0.098 0.371
MAE | 0.17 020 0.12 0.14 0.20 0.04

AUC |54.08 56.07 73.16 63.97 44.85 91.40

XMF [1] alOU | 589 3.89 1093 6.85 5.77 24.52
SIM | 0.195 0.216 0.399 0.187 0.115 0.349

MAE |0.158 0.179 0.130 0.130 0.213 0.050

AUC |63.98 54.13 69.94 59.89 49.97 93.72

IAG [16] alOU | 8.10 3.71 1047 492 440 38.27
SIM | 0.239 0.221 0.402 0.146 0.148 0.562

MAE | 0.142 0.168 0.130 0.146 0.175 0.028

AUC | 65.09 46.95 78.52 60.64 59.49 90.99

alOU | 7.22 220 10.23 593 9.61 23.60

LASO7] SIM | 0.262 0.116 0.404 0.152 0.196 0.350
MAE | 0.138 0.209 0.126 0.124 0.158 0.043

AUC |82.13 51.36 77.53 72.82 52.21 97.39

Ours alOU | 12.59 248 10.66 11.28 8.53 41.53
SIM | 0.356 0.125 0.412 0.290 0.143 0.599

MAE | 0.105 0.182 0.129 0.108 0.171 0.018

methods typically used in single-view techniques.

— TAGNet (IAG) [16]: This work leverages the human abil-
ity to perceive object affordance in the physical world
through demonstration images. It proposes a method
to locate 3D object affordance from 2D interactions in
images, aligning region features of objects from differ-
ent sources. Additionally, to resolve the ambiguity of
affordance, the dynamic factors involved in affordance
extraction are decomposed into interactions between the
subject-object and object-scene. Contextual modeling of
these interactions reveals explicit affordance.

— LASO [7]: This work explores the synergy with large
language models (LLMs) and proposes the setting of
language-guided 3D object affordance segmentation,
aiming to segment 3D object affordance based on given
expert-crafted questions. The method introduces an adap-
tive fusion module to identify target affordance regions at
different scales and utilizes a set of affordance queries
conditioned on linguistic clues to generate dynamic ker-
nels. These dynamic kernels are then convolved with
point cloud features to produce segmentation masks. We
use the Intern VL to generate question descriptions for the



Table 5. Evaluation Metrics in Unseen Object. Results of each object type in the unseen object setting. “Base.” denotes “Baseballbat”,
“Motor.” denotes “Motorcycle”, “Refri.” denotes “Refrigerator”, and “Scis.” denotes “Scissors”, “Skat.” denotes “Skateboard”.

Method ‘ Metrics ‘ Base. Bucket Clock Fork Kettle Laptop Mop Motor. Refri. Scis. Skat.
AUC 69.28  51.67 75.62  79.28  60.89 74.15 85.81  76.78 82.72 57.15 7247
Baseline alOU 36.03 6.17 20.63  26.36 4.5 8.19 27.21 6.90 1243 998 10.81
SIM 0.502  0.104 0437 0471 0.085 0262 0481 0.162 0.349 0.255 0.396
MAE 0.214  0.198 0.141 0.139 0.135 0.205 0.141  0.064 0.089 0.169 0.192
AUC 76.40  57.24 82.14 83.09 41.29 72.25 90.13  59.18 82.06 64.49 79.72
FRCNN [15] alOU | 41.76 6.83 24.20  29.01 2.35 8.73 30.24 3.52 698 11.17 16.23
SIM 0.572  0.125 0.500 0.512 0.054 0.293 0.549 0.099 0.294 0.289 0.459
MAE 0.171  0.190 0.133  0.134 0.174 0.169  0.119 0.084 0.128 0.168 0.197
AUC 76.75  59.73 77.86 8193 61.74 73,52 79.09 69.02 8422 5631 81.80
XMF [1] alOU 37.62  10.26 19.13 2723  5.50 8.66 20.53 5.54 9.41 1024 18.38
SIM 0.528  0.169 0444 0.497 0.107 0314 0400 0.162 0.336 0.261 0.482
MAE 0.171  0.165 0.137 0.120 0.123 0.128  0.136  0.033  0.094 0.165 0.151
AUC 85.32  65.52 69.21 73.63 54.38 78.17  92.09 79.74  80.63 56.62 58.84
TAG [16] alOU | 42.84 12.56 1348 2260 2.65 6.95 37.66 9.30 1443 737 4.61
SIM 0.592  0.231 0.385 0.422 0.070 0299  0.658 0.227 0.335 0250 0.273
MAE 0.169  0.146 0.148 0.149 0.120 0.104  0.085 0.023 0.092 0.187 0.167
AUC 73.99  52.61 80.64 8583 63.68 69.20 8721 7221 72.70 5826 7391
LASO [7] alOU 38.58 6.51 2212 30.63 492 6.33 28.05 443 4.60 9.38 9.52
SIM 0.551  0.148 0477 0.570 0.093 0259 0590 0.138  0.179 0.288 0.394
MAE 0.184  0.160 0.113  0.087 0.125 0.137  0.100 0.030 0.081 0.164 0.162
AUC 82.73 8341 84.00 89.28 79.33 7498 91.80 9573  78.69 64.83 59.50
Ours alOU | 4193  28.75 20.23  31.83  7.33 5.17 3237 17.79 1345 1297 872
SIM 0.584  0.469 0486 0.567 0.182 0242  0.612 0356 0.294 0.283 0.324
MAE 0.148  0.081 0.111  0.135 0.048 0.130  0.104 0.033 0.073 0.159 0.149

input interactive images.

C.2. Detailed Metric Results

To thoroughly evaluate the performance of the GREAT
model, we present the results for each affordance or object
category under the three data settings. Compared to other
methods, our approach achieves optimal results across the
majority of affordance or object categories. For the unseen
affordance setting, we present results for each affordance
category that does not appear in the training set (Tab. 4).
For the unseen object setting, we provide results for each
object category that does not appear in the training set (Tab.
5). While for the seen setting, we present results for each
affordance category (Tab. 10). The experimental results
demonstrate that, under the same task settings, our model
exhibits strong robustness and excellent generalization ca-
pabilities, indirectly validating the rationality of the open-
vocabulary 3D object affordance grounding task setting.

C.3. More Visual Results

We present the visualization results of GREAT on three dif-
ferent partitions. Fig. 1 shows the results for seen set-
ting, while Fig. 2 presents the results for unseen object

and unseen affordance settings. The results demonstrate
that GREAT can accurately predict the affordance regions
of 3D object in diverse interactive images and across mul-
tiple object categories, highlighting its stability, robustness,
and generalization ability.

C.4. Partial and Rotated Results

Following the experimental setting proposed in [3] and [16],
we tested the model’s performance on partial and freely ro-
tated point clouds, simulating object occlusion and rotation
in daily environments. The corresponding visualization re-
sults are shown in the Fig. 3 and Fig. 4. The results
demonstrate that even when the point clouds contain only
partial object structures or are randomly rotated in space,
our model can still accurately predict the 3D affordance of
the object in open-vocabulary scenarios. This indicates that
the reasoning knowledge from 2D interactions provides cru-
cial cues that help the model understand the correlation be-
tween geometric structure and affordance. This capability
of the model provides strong support for robots to quickly
adapt to a wide range of real-world scenarios and respond
to changes in the operational environment, making it highly
effective for dynamic, real-world tasks.



Table 6. Comparison on the PIAD. Evaluation metrics of comparison methods on the PIAD benchmark, ¢ denotes the relative improve-

ment of our method over IAG method.

‘ Seen ‘ Unseen Object ‘ Unseen Affordance
Methods\AUC 1alOU 1 SIM TMAEH AUC 1t aloU 1 SIM 1 MAE| \ AUC aloU 1 SIM 1 MAE|
IAG [16]] 82.88 18.88 0.544 0.098 |68.49 ¢1.3% 7.22 3.7% 0.344 ©2.3%0.139 ©8.6%|55.36 ©13.1%6.50 ©0.9% 0.203 ©30.1%0.170 ©15.9%
Ours |85.22 19.61 0.569 0.093 69.41 7.49 0.352 0.127 62.59 6.56 0.264 0.143

Table 7. Comparison with OpenAD. Evaluation metrics of comparison methods on the PIADv2 benchmark, ¢ denotes the relative

improvement of our method over OpenAD method.

| Seen | Unseen Object | Unseen Affordance
Methods |AUC talOU 1SIM tMAE|| AUC+  alOU 1 SIM 1 MAE| | AUCT  alOUt  SIM? MAE|
OpenAD [10]| 89.54 31.88 0.526 0.104 |73.49 ©8.3% 16.62 ©21.3%0.339 ©158.6% 0.159 ©31.5%[61.22 ©14.0% 8.00 ©50.6% 0.229 ©26.6% 0.167 ©23.9%
Ours 91.99 38.03 0.676 0.067 79.57 20.16 0.402 0.109 69.81 12.05 0.290 0.127

C.5. Computational Complexity

The comparison results of the computational complexity
metrics are presented in the Tab. 8, including model in-
ference time (MIT.), chain-of-thought inference time (CoT-
IT.), model parameters and trainable parameters. Although
the CoT-IT. is slightly longer, it results in performance gains
(Tab. 2 main paper), a trend also observed in LLMs like
GPT-O1 and DeepSeek-R1. We mitigate the real-time rea-
soning burden during training by pre-generating and storing
the CoT reasoning knowledge base, thereby significantly re-
ducing the computation overhead and training complexity.
Besides, fine-tuning MLLM only contains 25M trainable
parameters.

C.6. More comparative experiments

Benchmark fairness. To ensure the fairness of the bench-
mark, we train our method on PIAD and compare it to
IAG[16], as shown in Tab. 6. It is worth emphasizing that
all compared methods in Tab. 2 main paper are re-trained
on PIADv2. Our method shows excellent performance on
both PIAD and PIADv2.

Comparison with clip-based method. To clearly motivate
the needing of a big MLLM with respect to more compact
text-models, we compare with the OpenAD[10] method on
PIADvV2, as shown in Tab. 7.

Combine two knowledge through one encoder. At the
level of method design, is it effective to combine “ob-
ject geometric properties” and “affordance interaction in-
tentions” through an encoder? For example, we combine
them through a text encoder in the unseen object partition,
resulting in performance degradation, as shown in Tab. 9.
Geometric attributes focus on object physical shape, while
interaction intentions focus on the functionality of an object
in a specific context. Forcing both into one encoder may
over-couple, resulting in confusing information and making
it difficult to capture the respective semantic features.

Table 8. Computational Complexity. MIT.: model inference
time. CoT-IT.: chain-of-thought inference time. Model Params.:
model parameters. Trainable Params.: trainable parameters.

Method \ MIT. CoT-IT. Model Params. Trainable Params.

TIAG [16] | 1.426s - 24.7M 24.TM
LASO [7] | 1.336s - 130.5M 130.5M
Ours 1.272s  6.086s 256.7M 23.1M

Table 9. Combine two knowledge through one encoder. Eval-
uation metrics of our method with one encoder on the PIADv2
benchmark, ¢ denotes the relative improvement of our method
over the method with one encoder.

AUC 1
73.0308.9%

alou 1 SIM 4
17.95012.3%  0.38404.7%

MAE |
0.11303.5%

C.7. Application in robotics

We provide an explanation of how the proposed method can
be effectively applied to real robots.The training process of
the method involves establishing a mapping between 2D in-
teraction contents and 3D object regions, which is not lim-
ited to a specific instance. Once this mapping is established,
the input 2D interaction contents can be easily obtained in
various ways e.g., constructing a knowledge base or lever-
aging the large generative model like Stable Diffusion 3. To
build such a mapping that can generalize across instances,
the input image and point cloud keep a multi-to-multi pair-
ing during training. This allows the model to learn simi-
lar geometries of distinct instances, thereby improving the
model’s ability to generalize to real-world applications. Al-
though the interaction methods may be different, the inter-
action regions of objects are mostly consistent, through the
above manner, we enable the model to build this consis-
tency.



Table 10. Evaluation Metrics in Seen. Results of each affordance type for all comparison methods in the seen setting. “Cont.” denotes
“Contain”, “Supp.” denotes “Support”, “Wrap.” denotes “Wrapgrasp”, and “Disp.” denotes “Display”.

Method \Metrics \ Grasp Cont. Lift Open Lay Sit Supp. Wrap. Pour Move Disp. Push

AUC 7894 67.18 91.89 8444 9528 9338 90.19 8898 8233 60.02 86.13 88.97
alOU | 2879 1325 44.09 24.82 4429 36.07 3290 4728 18.66 11.72 31.73 17.15

Baseline SIM | 0501 0363 0546 0399 0.728 0.654 0.684 0715 0356 0347 0597 0.545
MAE | 0.087 0.130 0055 0.062 0.059 0066 0.095 008 008 0.166 0.097 0.069

AUC | 8255 7601 9030 8672 93.05 91.51 88.13 8502 8329 6635 88.18 90.74
FRONN[15] | MOU | 2832 1529 3377 2494 3900 3318 3171 4514 1738 1645 3321 10.08
SIM | 0506 0419 0421 0390 0680 0.628 0.684 0704 0337 0442 0.636 0492

MAE | 0093 0.129 0083 0070 0073 0075 0.097 0091 0099 0.145 0.091 0.072

AUC | 8034 69.14 9191 8629 9438 9488 8947 8875 77.99 5595 8824 91.65

XME [1] alOU | 2553 1425 4191 2546 4451 3696 3245 4601 1733 907 3138 7.94
SIM | 0489 0382 0512 0411 0729 0689 0688 0710 0340 0307 0623 0576

MAE | 0092 0.128 0053 0071 0061 0061 0092 0083 0098 0.164 0.091 0.067

AUC | 7433 8256 8494 81.69 9223 9359 9125 9214 7594 7678 90.82 78.68

1AG [16] alOU | 2030 2023 2870 2461 3837 3467 3391 4805 2248 1732 3420 6.06
SIM | 0447 0529 0417 0403 0672 0652 0712 0745 0404 0514 0673 0493

MAE | 0107 0.111 0070 0070 0074 0066 0091 0078 0.101 0.125 0082 0.073

AUC | 86.88 83.17 9470 8723 9502 9493 9031 90.77 8550 7497 88.86 88.67

LASO[] | AIOU | 3037 1939 4806 2304 4219 3741 3051 4844 1967 2203 3317 12.00
SIM | 0560 0507 0570 0389 0724 0684 0685 0750 0375 0534 0.628 0.550

MAE | 0081 0.118 0051 0069 0063 0062 0.101 0083 008 0133 0091 0072

AUC | 8833 8783 9688 89.82 9503 9552 91.61 9043 9398 8942 9056 86.77

Ours alOU | 3511 2326 4973 29.17 40.66 4052 3581 4549 3004 27.09 3398  6.40

SIM 0.635 0.558 0.578 0470 0.727 0.717 0.730 0.734 0.544 0.684 0.647 0.554
MAE 0.075 0.102 0.047 0.056 0.062 0.059 0.082 0.082 0.069 0.099 0.085 0.090

Method \Metrics \ Listen Wear Press Cut Stab Carry Ride Clean Play Beat Speak Pull

AUC 86.16 92.00 8845 63.82 82.10 93.82 9471 8587 9446 9335 8827 8848
alOU 17.37 53.14 2268 12.03 22.08 4696 3020 3592 2224 4510 3949 40.76

Baseline SIM | 0599 0.758 0.530 0275 0.437 0711 0536 0.580 0.594 0.678 0.628 0.523
MAE | 0.089 0044 0095 0.133 0.081 0055 0024 0088 0.049 0042 0.088 0.020
AUC | 8562 9179 8823 7792 93.12 9583 9338 83.03 9465 9428 8737 9526
FRONN[15] | #OU | 1719 5348 2286 14.17 3003 4926 2878 3748 2200 4403 4311 4136
SIM | 0.607 0779 0536 0410 0531 0751 0528 0600 0598 0.681 0.674 0.528
MAE | 0.092 0044 0.101 0.127 0.060 0055 0.026 0090 0052 0.044 0.089 0.026
AUC | 89.88 91.88 9033 70.67 80.85 9441 9517 8559 9479 9352 8301 88.75
XMF [1] alOU | 21.00 5146 2340 1619 2474 4979 30.12 3538 2238 4526 39.11 36.42
SIM | 0.684 0760 0571 0423 0407 0743 0552 0556 0610 0675 0611 0461
MAE | 0.076 0.044 0092 0.116 0.081 0053 0025 0096 0052 0041 0.096 0.028
AUC | 90.12 9283 8820 78.15 79.58 89.99 9402 95.11 93.08 9772 88.61 96.64
IAG [16] alOU | 2022 5179 21.66 1481 3526 40.68 2896 3749 21.14 4527 41.54 42.64
SIM | 0.668 0767 0532 0504 0503 0657 0534 0644 0574 0708 0.635 0.603
MAE | 0082 0043 0.100 0.101 0.063 0067 0024 0065 0054 0032 0.102 0.017
AUC | 8940 9275 8822 91.50 84.93 9848 96.66 82.52 9425 96.13 86.55 98.99
LASO[7] | AIOU | 1958 5416 2208 1904 3472 5277 2825 2526 2170 4270 4116 408
SIM | 0649 0773 0522 0632 0510 0779 0547 0427 0575 0.680 0.648 0.594
MAE | 0.082 0043 0.104 0.073 0060 0045 0023 0.119 0054 0.039 0092 0014
AUC | 9190 92.00 9096 8642 8832 9884 98.60 89.79 96.04 97.86 89.18 98.69
Ours alOU | 2226 5391 2664 1672 36.82 5253 4501 37.06 2593 4675 4436 3634

SIM 0.736  0.781 0.554 0.611 0.553 0.789 0.732  0.639 0.715 0.753 0.641 0.499
MAE 0.065 0.045 0.080 0.084 0.064 0.037 0.018 0.063 0.038 0.031 0.077 0.019
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Figure 1. More Visualization Results of GREAT for Seen Setting.
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Figure 2. More Visualization Results of GREAT for Unseen Setting. The first four rows for Unseen Object setting, and the last four
rows for Unseen Affordance setting.
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Figure 4. Visualization Results of Rotated Point Cloud.
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