# GREAT: Geometry-Intention Collaborative Inference for Open-Vocabulary 3D Object Affordance Grounding

## Supplementary Material

#### **Contents**

| A. Implementation Details         | 1 |
|-----------------------------------|---|
| A.1. Method Details               | 1 |
| A.2. Evaluation Metrics           | 1 |
| A.3. Training Details             | 2 |
| B. Dataset                        | 2 |
| C. Experiments                    | 3 |
| C.1. Details of Modular Baselines | 3 |
| C.2. Detailed Metric Results      | 4 |
| C.3. More Visual Results          | 4 |
| C.4. Partial and Rotated Results  | 4 |
| C.5. Computational Complexity     | 5 |
| C.6. More comparative experiments | 5 |
| C.7. Application in robotics      | 5 |

## A. Implementation Details

#### A.1. Method Details

We demonstrate dimensions and meanings of tensors in the GREAT pipeline as shown in Tab. 1. For the image branch, ResNet18 [4] is chosen as the feature extractor. The input image is randomly cropped and resized to 224 × 224, producing image features with a shape of  $\mathbf{F}_i \in \mathbb{R}^{512 \times 7 \times 7}$ . A 1×1 convolutional layer is applied to reduce the feature dimension and the feature is flattened to  $\mathbf{F}_i \in \mathbb{R}^{512 \times 49}$ . For the point branch, each input point cloud contains 2048 points. We employ pointnet++ [11], which consists of three set abstraction (SA) layers, to progressively extract multi-scale point cloud features. Within each SA layer, Farthest Point Strategy (FPS) is used to sample points, with the sampling counts set to 512, 128, and 64. Ultimately, this branch outputs point features represented as  $\mathbf{F}_p \in \mathbb{R}^{512 \times 2048}$ . Detailed prompts on Multi-Head Affordance Chain-of-Thought (MHACoT) reasoning are presented below.

- Prompt One: "Point out which part of the object in the image interacts with the person. If this part is different from the part of the object shown in the image that performs the main function, point out the part of the object that performs the main function shown in the image."
- Prompt Two: "Explain why this part can interact from the geometric structure of the object. Just give the final result in one sentence."
- Prompt Three: "Describe the interaction between object and the person in the image, including the interaction

Table 1. **Tensors.** The dimension and meaning of the tensors in the pipeline.

| Tensor                            | Dimension               | Meaning                                                    |
|-----------------------------------|-------------------------|------------------------------------------------------------|
| $\mathbf{F_{i}}$                  | $512 \times 7 \times 7$ | image extractor output                                     |
| $\mathbf{F}_{p}$                  | $512 \times 64$         | point cloud extractor output                               |
| $\mathbf{T}_o, \mathbf{ar{T}}_o$  | $1 \times 512$          | object geometric knowledge feature                         |
| $\mathbf{T}_a,\bar{\mathbf{T}}_a$ | $3 \times 512$          | affordance intention knowledge feature                     |
| $\mathbf{F}_{p}^{'}$              | $512 \times 64$         | project $\mathbf{F}_p$ to a feature space                  |
| $ar{\mathbf{T}}_o^p$              | $512 \times 1$          | project $\bar{\mathbf{T}}_o$ to a feature space            |
| $\mathbf{P}_o$                    | $512 \times 64$         | fused point features by $\mathbf{F}_p, \bar{\mathbf{T}}_o$ |
| $\mathbf{F}_{tp}$                 | $512 \times 2048$       | upsampled fused point features by $\mathbf{P}_o$           |
| $\mathbf{F}_{ti}$                 | $512 \times 16$         | fused image features by $\mathbf{F}_i, \bar{\mathbf{T}}_a$ |
| $\mathbf{F}_{lpha}$               | $512 \times 2048$       | affordance feature representation                          |
| $\phi$                            | $2048 \times 1$         | 3D object affordance                                       |

type, the interaction part of the object, and the interaction part of the person."

— Prompt Four: "List two interactions that describe additional common interactions that the object can interact with people, including the interaction type, the interaction part of the object, and the interaction part of the person."

We connect the answers of Prompt One and Prompt Two, as well as the answers of Prompt Three and Prompt Four, to obtain object geometric knowledge feature  $\mathbf{T}_o \in \mathbb{R}^{1 \times 512}$  and affordance intention knowledge feature  $\mathbf{T}_a \in \mathbb{R}^{3 \times 512}$  through the text encoder RoBERTa [8].

#### A.2. Evaluation Metrics

We employ four evaluation metrics to assess performance: **AUC** [9], **aIOU** [12], **SIM** [13], and **MAE** [14]. A detailed explanation of each metric is provided below:

- AUC [9]: AUC is a widely adopted metric for evaluating saliency maps, treating them as binary classifiers across varying thresholds. By computing the true and false positive rate at each threshold, it produces the ROC curve, which captures the model's classification performance. In our work, AUC is utilized to evaluate the model's capability to differentiate between affordance and non-affordance regions of an object with 2048 points.
- aIOU [12]: IOU is a critical metric for assessing the similarity between two regions, widely employed to quantify the degree of overlap between predicted and ground truth regions. Its range is [0, 1], where 1 indicates perfect overlap and 0 signifies no intersection. IOU is defined as the ratio of the intersection area to the union area of the two

regions, formulated as:

$$IOU = \frac{Intersection Area}{Union Area},$$
 (1)

The aIOU is defined as the mean IOU value computed over multiple thresholds, formulated as:

$$aIOU = \frac{1}{T} \sum_{i=1}^{T} IOU_i,$$
 (2)

where T denotes the number of thresholds.

- SIM [13]: SIM measures the similarity between the prediction map (P) and the ground truth map  $(Q^D)$ , formulated as:

$$SIM(P, Q^{D}) = \sum_{i} min(P_{i}, Q_{i}^{D}),$$

$$where \quad \sum_{i} P_{i} = \sum_{i} Q_{i}^{D} = 1.$$
(3)

— MAE [14]: MAE is a widely used metric for evaluating models, quantifying the deviation between predicted and true values. It is calculated by averaging the absolute differences between the predicted values and the corresponding true values, as formulated as dividing the total error by N:

MAE = 
$$\frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|,$$
 (4)

where  $y_i$  denotes the ground truth,  $\hat{y}_i$  denotes the prediction

### A.3. Training Details

In the fine-tuning process of MLLM, we exclusively fine-tune the parameters of the injected learnable adapters [5], while freezing the primary parameters of the InternVL [2]. The training is conducted out on two NVIDIA 3090 GPUs, using a dataset of 7135 samples that are unseen in the test sets across three different data settings. The model is trained for 4460 iterations with a learning rate of 4e-5, a batch size of 4, and a LoRA rank set to 16.

To ensure a fair comparison, we train our model and implement all baseline methods under identical training settings. Our model is built using the PyTorch framework and optimized with the Adam [6] optimizer. The training epoch is set to 65, with an initial learning rate of 1e-4 and a batch size of 16. All training processes are conducted on two NVIDIA 3090 GPUs. The image feature extractor leverages pretrained parameters from ImageNet, the parameters of text feature extractor are frozen, while the point cloud feature extractor is trained from scratch. Furthermore, as strict one-to-one pairing between images and point clouds

Table 2. **Unseen Objects.** The affordance and corresponding number of images and point clouds for each object in the test set under the **Unseen Object** setting.

| Object       | Affordance                 | Image | Point |
|--------------|----------------------------|-------|-------|
| Scissors     | Cut, Grasp, Stab           | 130   | 410   |
| Baseballbat  | Wrapgrasp                  | 516   | 112   |
| Mop          | Wrapgrasp, Clean           | 286   | 17    |
| Clock        | Display                    | 143   | 1009  |
| Refrigerator | Contain, Open              | 147   | 290   |
| Bucket       | Contain, Lift              | 107   | 234   |
| Motorcycle   | Ride                       | 486   | 301   |
| Fork         | Wrapgrasp, Stab            | 240   | 90    |
| Skateboard   | Support                    | 641   | 152   |
| Laptop       | Display, Press             | 296   | 679   |
| Kettle       | Contain, Grasp, Open, Pour | 280   | 524   |

Table 3. **Unseen Affordances.** The object and corresponding number of images and point clouds for each affordance in the test set under the **Unseen Affordance** setting.

| Affordance | Object                        | Image | Point |
|------------|-------------------------------|-------|-------|
| Cut        | Scissors, Knife               | 366   | 425   |
| Pour       | Bottle, Kettle, TrashCan, Mug | 435   | 2945  |
| Pull       | Suitcase                      | 181   | 20    |
| Lay        | Bed                           | 289   | 779   |
| Carry      | Backpack, Surfboard           | 377   | 118   |
| Listen     | Earphone                      | 365   | 710   |

is not required, we adopt an online pairing strategy during training. In each training step, a single image can be paired with n point clouds, effectively augmenting the training sample size. Considering both training efficiency and model performance, we set n=2 in our implementation to strike an optimal balance.

#### **B.** Dataset

We provide a detailed description of the dataset partitioning process. PIADv2 consists of 43 object categories and 24 affordance categories. To validate the effectiveness of GREAT for object affordance grounding in an openvocabulary scenario, we divide the dataset into three partitions: **Seen**, **Unseen Object** and **Unseen Affordance**. In **Seen**, all object and affordance categories in the test set are identical to those in the training set. In **Unseen Object**, the affordances remain consistent with the training set, but several objects are excluded from the training set. The following eleven objects are selected as the test set for unseen object: "Scissors", "Baseballbat", "Mop", "Clock", "Refrigerator", "Bucket", "Motorcycle", "Fork", "Skateboard", "Laptop", "Kettle". The ratio of object categories between

the training set and the test set is 32:11. The affordance categories corresponding to each unseen object, along with the number of associated images and point clouds, are detailed in the Tab. 2. Notably, a fixed one-to-one correspondence is not required, as a single image can be paired with multiple point clouds. In Unseen Affordance, the certain affordances of object categories in the test set are not present in the training set. Specifically, the following six affordances are selected as the test set for unseen affordance: "Cut," "Pour", "Pull", "Lay", "Carry", "Listen". Notably, the earphone (which corresponds to the action "Listen") and the suitcase (which corresponds to the action "Pull") are also absent from the training set, further increasing the challenge for generalization. The ratio of affordace categories between the training set and the test set is 18:6. The object categories corresponding to each unseen affordance, along with the number of associated images and point clouds, are detailed in the Tab. 3.

## C. Experiments

#### C.1. Details of Modular Baselines

We have selected two leading 3D object affordance grounding methods, IAG [16] and LASO [7], which leverage either the interaction image or the language guiding the interaction to obtain additional contextual information. In addition, we have chosen two of the top-performing image-point cloud cross-modal learning methods compared in IAG, FRCNN [15] and XMF [1]. These methods respectively extract features from image and point cloud data and align or fuse the extracted features. We reimplement the above four methods across three data settings in PIADv2, where all compared methods share the same feature extractor as our GREAT.

- Baseline: For the design of the baseline, we directly connect the features output by the image and point cloud extractors, and then use the output head to predict the affordance of 3D object point clouds, without any intermediate steps to align features from different sources.
- FusionRCNN (FRCNN) [15]: This work tackles the challenge of object recognition and localization caused by the sparsity of point clouds in distant regions, proposing a novel multi-modal two-stage approach. The method effectively integrates point cloud data and camera images in the region of interest (RoI), adaptively combining sparse LiDAR geometric information with dense camera texture information within a unified attention mechanism.
- XMFnet (XMF) [1]: This work explores the problem of point cloud completion using edge information provided by a single image and shape priors. By combining self-attention and cross-attention mechanisms, it effectively fuses features from two different modalities, integrating the information from both modalities into a local latent space. It avoids the complex point cloud reconstruction

Table 4. Evaluation Metrics in Unseen Affordance. Results of each affordance type for all comparison methods in the unseen affordance setting.

| Setting     | Metrics | Carry | Listen | Lay   | Pour  | Cut   | Pull  |
|-------------|---------|-------|--------|-------|-------|-------|-------|
|             | AUC     | 57.39 | 48.57  | 69.45 | 59.96 | 39.55 | 93.61 |
| Baseline    | aIOU    | 7.33  | 3.43   | 6.85  | 6.08  | 4.25  | 31.42 |
| Daseillie   | SIM     | 0.237 | 0.152  | 0.324 | 0.184 | 0.105 | 0.348 |
|             | MAE     | 0.147 | 0.221  | 0.131 | 0.145 | 0.208 | 0.054 |
|             | AUC     | 52.63 | 50.40  | 75.68 | 59.54 | 43.84 | 93.28 |
| FRCNN [15]  | aIOU    | 5.39  | 3.23   | 10.70 | 6.17  | 4.62  | 29.58 |
| FRCINI [13] | SIM     | 0.178 | 0.157  | 0.411 | 0.179 | 0.098 | 0.371 |
|             | MAE     | 0.17  | 0.20   | 0.12  | 0.14  | 0.20  | 0.04  |
|             | AUC     | 54.08 | 56.07  | 73.16 | 63.97 | 44.85 | 91.40 |
| YMF [1]     | aIOU    | 5.89  | 3.89   | 10.93 | 6.85  | 5.77  | 24.52 |
| XMF [1]     | SIM     | 0.195 | 0.216  | 0.399 | 0.187 | 0.115 | 0.349 |
| XMF [1]     | MAE     | 0.158 | 0.179  | 0.130 | 0.130 | 0.213 | 0.050 |
|             | AUC     | 63.98 | 54.13  | 69.94 | 59.89 | 49.97 | 93.72 |
| IAG [16]    | aIOU    | 8.10  | 3.71   | 10.47 | 4.92  | 4.40  | 38.27 |
| IAG [10]    | SIM     | 0.239 | 0.221  | 0.402 | 0.146 | 0.148 | 0.562 |
|             | MAE     | 0.142 | 0.168  | 0.130 | 0.146 | 0.175 | 0.028 |
|             | AUC     | 65.09 | 46.95  | 78.52 | 60.64 | 59.49 | 90.99 |
| LASO [7]    | aIOU    | 7.22  | 2.20   | 10.23 | 5.93  | 9.61  | 23.60 |
| LASO [/]    | SIM     | 0.262 | 0.116  | 0.404 | 0.152 | 0.196 | 0.350 |
|             | MAE     | 0.138 | 0.209  | 0.126 | 0.124 | 0.158 | 0.043 |
|             | AUC     | 82.13 | 51.36  | 77.53 | 72.82 | 52.21 | 97.39 |
| Ours        | aIOU    | 12.59 | 2.48   | 10.66 | 11.28 | 8.53  | 41.53 |
| Ours        | SIM     | 0.356 | 0.125  | 0.412 | 0.290 | 0.143 | 0.599 |
|             | MAE     | 0.105 | 0.182  | 0.129 | 0.108 | 0.171 | 0.018 |

methods typically used in single-view techniques.

- IAGNet (IAG) [16]: This work leverages the human ability to perceive object affordance in the physical world through demonstration images. It proposes a method to locate 3D object affordance from 2D interactions in images, aligning region features of objects from different sources. Additionally, to resolve the ambiguity of affordance, the dynamic factors involved in affordance extraction are decomposed into interactions between the subject-object and object-scene. Contextual modeling of these interactions reveals explicit affordance.
- LASO [7]: This work explores the synergy with large language models (LLMs) and proposes the setting of language-guided 3D object affordance segmentation, aiming to segment 3D object affordance based on given expert-crafted questions. The method introduces an adaptive fusion module to identify target affordance regions at different scales and utilizes a set of affordance queries conditioned on linguistic clues to generate dynamic kernels. These dynamic kernels are then convolved with point cloud features to produce segmentation masks. We use the InternVL to generate question descriptions for the

Table 5. **Evaluation Metrics in Unseen Object.** Results of each object type in the unseen object setting. "Base." denotes "Baseballbat", "Motor." denotes "Motorcycle", "Refri." denotes "Refrigerator", and "Scis." denotes "Scissors", "Skat." denotes "Skateboard".

| Method     | Metrics | Base. | Bucket | Clock | Fork  | Kettle | Laptop | Мор   | Motor. | Refri. | Scis. | Skat. |
|------------|---------|-------|--------|-------|-------|--------|--------|-------|--------|--------|-------|-------|
|            | AUC     | 69.28 | 51.67  | 75.62 | 79.28 | 60.89  | 74.15  | 85.81 | 76.78  | 82.72  | 57.15 | 72.47 |
| Baseline   | aIOU    | 36.03 | 6.17   | 20.63 | 26.36 | 4.75   | 8.19   | 27.21 | 6.90   | 12.43  | 9.98  | 10.81 |
| Daseillie  | SIM     | 0.502 | 0.104  | 0.437 | 0.471 | 0.085  | 0.262  | 0.481 | 0.162  | 0.349  | 0.255 | 0.396 |
|            | MAE     | 0.214 | 0.198  | 0.141 | 0.139 | 0.135  | 0.205  | 0.141 | 0.064  | 0.089  | 0.169 | 0.192 |
|            | AUC     | 76.40 | 57.24  | 82.14 | 83.09 | 41.29  | 72.25  | 90.13 | 59.18  | 82.06  | 64.49 | 79.72 |
| FRCNN [15] | aIOU    | 41.76 | 6.83   | 24.20 | 29.01 | 2.35   | 8.73   | 30.24 | 3.52   | 6.98   | 11.17 | 16.23 |
| FRCMM [13] | SIM     | 0.572 | 0.125  | 0.500 | 0.512 | 0.054  | 0.293  | 0.549 | 0.099  | 0.294  | 0.289 | 0.459 |
|            | MAE     | 0.171 | 0.190  | 0.133 | 0.134 | 0.174  | 0.169  | 0.119 | 0.084  | 0.128  | 0.168 | 0.197 |
|            | AUC     | 76.75 | 59.73  | 77.86 | 81.93 | 61.74  | 73.52  | 79.09 | 69.02  | 84.22  | 56.31 | 81.80 |
| XMF [1]    | aIOU    | 37.62 | 10.26  | 19.13 | 27.23 | 5.50   | 8.66   | 20.53 | 5.54   | 9.41   | 10.24 | 18.38 |
| AMIT [1]   | SIM     | 0.528 | 0.169  | 0.444 | 0.497 | 0.107  | 0.314  | 0.400 | 0.162  | 0.336  | 0.261 | 0.482 |
|            | MAE     | 0.171 | 0.165  | 0.137 | 0.120 | 0.123  | 0.128  | 0.136 | 0.033  | 0.094  | 0.165 | 0.151 |
|            | AUC     | 85.32 | 65.52  | 69.21 | 73.63 | 54.38  | 78.17  | 92.09 | 79.74  | 80.63  | 56.62 | 58.84 |
| IAG [16]   | aIOU    | 42.84 | 12.56  | 13.48 | 22.60 | 2.65   | 6.95   | 37.66 | 9.30   | 14.43  | 7.37  | 4.61  |
| IAG [10]   | SIM     | 0.592 | 0.231  | 0.385 | 0.422 | 0.070  | 0.299  | 0.658 | 0.227  | 0.335  | 0.250 | 0.273 |
|            | MAE     | 0.169 | 0.146  | 0.148 | 0.149 | 0.120  | 0.104  | 0.085 | 0.023  | 0.092  | 0.187 | 0.167 |
|            | AUC     | 73.99 | 52.61  | 80.64 | 85.83 | 63.68  | 69.20  | 87.21 | 72.21  | 72.70  | 58.26 | 73.91 |
| LASO [7]   | aIOU    | 38.58 | 6.51   | 22.12 | 30.63 | 4.92   | 6.33   | 28.05 | 4.43   | 4.60   | 9.38  | 9.52  |
| LASO [7]   | SIM     | 0.551 | 0.148  | 0.477 | 0.570 | 0.093  | 0.259  | 0.590 | 0.138  | 0.179  | 0.288 | 0.394 |
|            | MAE     | 0.184 | 0.160  | 0.113 | 0.087 | 0.125  | 0.137  | 0.100 | 0.030  | 0.081  | 0.164 | 0.162 |
|            | AUC     | 82.73 | 83.41  | 84.00 | 89.28 | 79.33  | 74.98  | 91.80 | 95.73  | 78.69  | 64.83 | 59.50 |
| Ours       | aIOU    | 41.93 | 28.75  | 20.23 | 31.83 | 7.33   | 5.17   | 32.37 | 17.79  | 13.45  | 12.97 | 8.72  |
| Ours       | SIM     | 0.584 | 0.469  | 0.486 | 0.567 | 0.182  | 0.242  | 0.612 | 0.356  | 0.294  | 0.283 | 0.324 |
|            | MAE     | 0.148 | 0.081  | 0.111 | 0.135 | 0.048  | 0.130  | 0.104 | 0.033  | 0.073  | 0.159 | 0.149 |

input interactive images.

## C.2. Detailed Metric Results

To thoroughly evaluate the performance of the GREAT model, we present the results for each affordance or object category under the three data settings. Compared to other methods, our approach achieves optimal results across the majority of affordance or object categories. For the unseen affordance setting, we present results for each affordance category that does not appear in the training set (Tab. 4). For the unseen object setting, we provide results for each object category that does not appear in the training set (Tab. 5). While for the seen setting, we present results for each affordance category (Tab. 10). The experimental results demonstrate that, under the same task settings, our model exhibits strong robustness and excellent generalization capabilities, indirectly validating the rationality of the openvocabulary 3D object affordance grounding task setting.

#### C.3. More Visual Results

We present the visualization results of GREAT on three different partitions. Fig. 1 shows the results for seen setting, while Fig. 2 presents the results for unseen object

and unseen affordance settings. The results demonstrate that GREAT can accurately predict the affordance regions of 3D object in diverse interactive images and across multiple object categories, highlighting its stability, robustness, and generalization ability.

#### C.4. Partial and Rotated Results

Following the experimental setting proposed in [3] and [16], we tested the model's performance on partial and freely rotated point clouds, simulating object occlusion and rotation in daily environments. The corresponding visualization results are shown in the Fig. 3 and Fig. 4. The results demonstrate that even when the point clouds contain only partial object structures or are randomly rotated in space, our model can still accurately predict the 3D affordance of the object in open-vocabulary scenarios. This indicates that the reasoning knowledge from 2D interactions provides crucial cues that help the model understand the correlation between geometric structure and affordance. This capability of the model provides strong support for robots to quickly adapt to a wide range of real-world scenarios and respond to changes in the operational environment, making it highly effective for dynamic, real-world tasks.

Table 6. Comparison on the PIAD. Evaluation metrics of comparison methods on the PIAD benchmark,  $\diamond$  denotes the relative improvement of our method over IAG method.

|                   |           | Unseen Object |              |                          |             | Unseen Affordance    |               |           |                |               |
|-------------------|-----------|---------------|--------------|--------------------------|-------------|----------------------|---------------|-----------|----------------|---------------|
| Methods AUC † a   | aIOU ↑SI  | M ↑MAE↓       | <b>AUC</b> ↑ | aIOU ↑                   | SIM ↑       | MAE↓                 | <b>AUC</b> ↑  | aIOU ↑    | SIM ↑          | MAE↓          |
| IAG [16] 82.88    | 18.88 0.: | 544 0.098     | 68.49 \$1.3% | 57.22 <b>&lt;3.7</b> % ( | 0.344 02.39 | %0.139 <b>◊8.6</b> % | 55.36 \$13.1% | 6.50 0.9% | 0.203 \\$30.1% | 0.170 \$15.9% |
| <b>Ours</b> 85.22 | 19.61 0.3 | 569 0.093     | 69.41        | 7.49                     | 0.352       | 0.127                | 62.59         | 6.56      | 0.264          | 0.143         |

Table 7. **Comparison with OpenAD.** Evaluation metrics of comparison methods on the PIADv2 benchmark,  $\diamond$  denotes the relative improvement of our method over OpenAD method.

|             |       | Se     | en    |       |              | Unseer        | ı Object      |                            |               | Unseen A             | ffordance    |              |
|-------------|-------|--------|-------|-------|--------------|---------------|---------------|----------------------------|---------------|----------------------|--------------|--------------|
| Methods     | AUC ↑ | aIOU ↑ | SIM ↑ | MAE↓  | <b>AUC</b> ↑ | aIOU ↑        | SIM ↑         | $\mathbf{MAE}{\downarrow}$ | <b>AUC</b> ↑  | aIOU ↑               | SIM ↑        | MAE↓         |
| OpenAD [10] | 89.54 | 31.88  | 0.526 | 0.104 | 73.49 08.3%  | 16.62 \$21.3% | 0.339 \$18.6% | 0.159 \\$31.5\%            | 61.22 \$14.0% | 68.00 <b>◊50.6</b> % | 0.229 \26.6% | 0.167 <23.9% |
| Ours        | 91.99 | 38.03  | 0.676 | 0.067 | 79.57        | 20.16         | 0.402         | 0.109                      | 69.81         | 12.05                | 0.290        | 0.127        |

## C.5. Computational Complexity

The comparison results of the computational complexity metrics are presented in the Tab. 8, including model inference time (MIT.), chain-of-thought inference time (CoTIT.), model parameters and trainable parameters. Although the CoT-IT. is slightly longer, it results in performance gains (Tab. 2 main paper), a trend also observed in LLMs like GPT-O1 and DeepSeek-R1. We mitigate the real-time reasoning burden during training by pre-generating and storing the CoT reasoning knowledge base, thereby significantly reducing the computation overhead and training complexity. Besides, fine-tuning MLLM only contains 25M trainable parameters.

## **C.6.** More comparative experiments

**Benchmark fairness.** To ensure the fairness of the benchmark, we train our method on PIAD and compare it to IAG[16], as shown in Tab. 6. It is worth emphasizing that all compared methods in Tab. 2 main paper are re-trained on PIADv2. Our method shows excellent performance on both PIAD and PIADv2.

Comparison with clip-based method. To clearly motivate the needing of a big MLLM with respect to more compact text-models, we compare with the OpenAD[10] method on PIADv2, as shown in Tab. 7.

Combine two knowledge through one encoder. At the level of method design, is it effective to combine "object geometric properties" and "affordance interaction intentions" through an encoder? For example, we combine them through a text encoder in the unseen object partition, resulting in performance degradation, as shown in Tab. 9. Geometric attributes focus on object physical shape, while interaction intentions focus on the functionality of an object in a specific context. Forcing both into one encoder may over-couple, resulting in confusing information and making it difficult to capture the respective semantic features.

Table 8. **Computational Complexity.** MIT.: model inference time. CoT-IT.: chain-of-thought inference time. Model Params.: model parameters. Trainable Params.: trainable parameters.

| Method                       | MIT.   | CoT-IT. | Model Params. | Trainable Params. |
|------------------------------|--------|---------|---------------|-------------------|
| IAG [16]<br>LASO [7]<br>Ours | 1.426s | _       | 24.7M         | 24.7M             |
| LASO [7]                     | 1.336s | _       | 130.5M        | 130.5M            |
| Ours                         | 1.272s | 6.086s  | 256.7M        | 23.1M             |

Table 9. Combine two knowledge through one encoder. Evaluation metrics of our method with one encoder on the PIADv2 benchmark,  $\diamond$  denotes the relative improvement of our method over the method with one encoder.

| AUC    | !↑ a      | IOU↑      | SIM ↑       | MAE ↓             |
|--------|-----------|-----------|-------------|-------------------|
| 73.030 | 3.9% 17.9 | 95\$12.3% | 0.384\$4.7% | 0.113\sqrt{3.5\%} |

## C.7. Application in robotics

We provide an explanation of how the proposed method can be effectively applied to real robots. The training process of the method involves establishing a mapping between 2D interaction contents and 3D object regions, which is not limited to a specific instance. Once this mapping is established, the input 2D interaction contents can be easily obtained in various ways e.g., constructing a knowledge base or leveraging the large generative model like Stable Diffusion 3. To build such a mapping that can generalize across instances, the input image and point cloud keep a multi-to-multi pairing during training. This allows the model to learn similar geometries of distinct instances, thereby improving the model's ability to generalize to real-world applications. Although the interaction methods may be different, the interaction regions of objects are mostly consistent, through the above manner, we enable the model to build this consistency.

Table 10. **Evaluation Metrics in Seen.** Results of each affordance type for all comparison methods in the seen setting. "Cont." denotes "Contain", "Supp." denotes "Support", "Wrap." denotes "Wrapgrasp", and "Disp." denotes "Display".

| Baseline         AUC alOU         78.94 67.18 91.89 84.44 95.28 93.38 90.19 88.98 82.33 60.02 86.1           Baseline         aIOU 28.79 13.25 44.09 24.82 44.29 36.07 32.90 47.28 18.66 11.72 31.7           SIM 0.501 0.363 0.546 0.399 0.728 0.654 0.684 0.715 0.356 0.347 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p. Push                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baseline         aIOU         28.79         13.25         44.09         24.82         44.29         36.07         32.90         47.28         18.66         11.72         31.73           SIM         0.501         0.363         0.546         0.399         0.728         0.654         0.684         0.715         0.356         0.347         0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .3 88.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SIM 0.501 0.363 0.546 0.399 0.728 0.654 0.684 0.715 0.356 0.347 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 351T 0.00T 0.100 0.055 0.055 0.055 0.055 0.005 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MAE   0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AUC   82.55 76.01 90.30 86.72 93.05 91.51 88.13 85.02 83.29 66.35 88.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FRCNN [15] aIOU 28.32 15.29 33.77 24.94 39.00 33.18 31.71 45.14 17.38 16.45 33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SINI   0.300 0.419 0.421 0.390 0.080 0.028 0.084 0.704 0.337 0.442 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MAE   0.093   0.129   0.083   0.070   0.073   0.075   0.097   0.091   0.099   0.145   0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AUC         80.34         69.14         91.91         86.29         94.38         94.88         89.47         88.75         77.99         55.95         88.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| XMF[1] aIOU 25.53 14.25 41.91 25.46 44.51 36.96 32.45 46.01 17.33 9.07 31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>SIVI</b> 0.469 0.362 0.312 0.411 0.729 0.069 0.066 0.710 0.340 0.307 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MAE 0.092 0.128 0.053 0.071 0.061 0.061 0.092 0.083 0.098 0.164 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AUC 74.33 82.56 84.94 81.69 92.23 93.59 91.25 92.14 75.94 76.78 90.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IAG [16] aIOU 20.30 20.23 28.70 24.61 38.37 34.67 33.91 48.05 22.48 17.32 34.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SIVI   0.447   0.329   0.417   0.403   0.072   0.032   0.712   0.743   0.404   0.314   0.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AUC   86.88   83.17   94.70   87.23   95.02   94.93   90.31   90.77   85.50   74.97   88.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LASO [7]   aIOU   30.37   19.39   48.06   23.04   42.19   37.41   30.51   48.44   19.67   22.03   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33.1   33 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SIM   0.560   0.507   0.570   0.389   0.724   0.684   0.685   0.750   0.375   0.534   0.62   0.684   0.685   0.750   0.375   0.534   0.62   0.684   0.685   0.750   0.375   0.534   0.62   0.684   0.685   0.750   0.375   0.534   0.62   0.684   0.685   0.750   0.375   0.534   0.62   0.684   0.685   0.750   0.375   0.534   0.62   0.684   0.685   0.750   0.375   0.534   0.62   0.684   0.685   0.750   0.375   0.534   0.62   0.684   0.685   0.750   0.375   0.534   0.62   0.685   0.750   0.375   0.534   0.62   0.685   0.750   0.375   0.534   0.62   0.685   0.750   0.375   0.534   0.685   0.750   0.375   0.534   0.685   0.750   0.375   0.534   0.685   0.750   0.375   0.534   0.685   0.750   0.375   0.534   0.685   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0.750   0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AUC   88.33   87.83   96.88   89.82   95.03   95.52   91.61   90.43   93.98   89.42   90.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ours   aIOU   35.11   23.26   49.73   29.17   40.66   40.52   35.81   45.49   30.04   27.09   33.5<br>SIM   0.635   0.558   0.578   0.470   0.727   0.717   0.730   0.734   0.544   0.684   0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SIM   0.635   0.558   0.578   0.470   0.727   0.717   0.730   0.734   0.544   0.684   0.64<br>MAE   0.075   0.102   0.047   0.056   0.062   0.059   0.082   0.082   0.069   0.099   0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MALE MALE THE TO DE COLOR DE DE DE CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Method   Metrics   Listen Wear Press Cut Stab Carry Ride Clean Play Beat Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AUC   86.16   92.00   88.45   63.82   82.10   93.82   94.71   85.87   94.46   93.35   88.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 88.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AUC   86.16   92.00   88.45   63.82   82.10   93.82   94.71   85.87   94.46   93.35   88.2   94.71   85.87   94.46   93.35   88.2   94.71   85.87   94.46   93.35   88.2   94.71   85.87   94.46   93.35   88.2   94.71   85.87   94.46   93.35   88.2   94.71   85.87   94.46   93.35   88.2   94.71   85.87   94.46   93.35   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   93.25   94.71   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75   94.75  | 27 88.48<br>19 40.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Baseline         AUC         86.16         92.00         88.45         63.82         82.10         93.82         94.71         85.87         94.46         93.35         88.2           Baseline         aIOU         17.37         53.14         22.68         12.03         22.08         46.96         30.20         35.92         22.24         45.10         39.4           SIM         0.599         0.758         0.530         0.275         0.437         0.711         0.536         0.580         0.594         0.678         0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 88.48<br>49 40.76<br>28 0.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Baseline         AUC aIOU 17.37         86.16 92.00 88.45 63.82 82.10 93.82 94.71 85.87 94.46 93.35 88.2 94.71 85.87 94.46 93.35 88.2 94.71 85.87 94.46 93.35 88.2 94.71 85.87 94.46 93.35 88.2 94.71 85.87 94.46 93.35 88.2 94.71 85.87 94.46 93.35 88.2 94.71 85.87 94.46 93.35 88.2 94.71 85.87 94.46 93.35 88.2 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71 94.71                                          | 88.48<br>49 40.76<br>28 0.523<br>88 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Baseline         AUC aIOU 17.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 88.48<br>49 40.76<br>28 0.523<br>88 0.020<br>37 95.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Baseline         AUC         86.16         92.00         88.45         63.82         82.10         93.82         94.71         85.87         94.46         93.35         88.2           aIOU         17.37         53.14         22.68         12.03         22.08         46.96         30.20         35.92         22.24         45.10         39.4           SIM         0.599         0.758         0.530         0.275         0.437         0.711         0.536         0.580         0.594         0.678         0.62           MAE         0.089         0.044         0.095         0.133         0.081         0.055         0.024         0.088         0.049         0.042         0.08           AUC         85.62         91.79         88.23         77.92         93.12         95.83         93.38         83.03         94.65         94.28         87.3           FRONN [15]         aIOU         17.19         53.48         22.86         14.17         30.03         49.26         28.78         37.48         22.02         44.03         43.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>1 41.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Baseline         AUC aIOU 17.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>1 41.36<br>74 0.528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Baseline         AUC aIOU 17.37 53.14 22.68 12.03 22.08 46.96 30.20 35.92 22.24 45.10 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>11 41.36<br>44 0.528<br>39 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Baseline         AUC aIOU 17.37 53.14 22.68 12.03 22.08 46.96 30.20 35.92 22.24 45.10 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>11 41.36<br>44 0.528<br>39 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Baseline         AUC aIOU 17.37 53.14 22.68 12.03 22.08 46.96 30.20 35.92 22.24 45.10 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>11 41.36<br>44 0.528<br>39 0.026<br>01 88.75<br>1 36.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Baseline         AUC aIOU 17.37 53.14 22.68 12.03 22.08 46.96 30.20 35.92 22.24 45.10 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>11 41.36<br>74 0.528<br>39 0.026<br>01 88.75<br>11 36.42<br>11 0.461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Baseline         AUC aIOU 17.37 53.14 22.68 12.03 22.08 46.96 30.20 35.92 22.24 45.10 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 88.48<br>49 40.76<br>28 0.523<br>88 0.020<br>37 95.26<br>11 41.36<br>74 0.528<br>89 0.026<br>01 88.75<br>11 36.42<br>11 0.461<br>10 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Baseline         AUC aIOU 17.37 53.14 22.68 12.03 22.08 46.96 30.20 35.92 22.24 45.10 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 88.48<br>49 40.76<br>28 0.523<br>88 0.020<br>37 95.26<br>11 41.36<br>74 0.528<br>39 0.026<br>01 88.75<br>1 36.42<br>1 0.461<br>1 0.64<br>1 0 |
| Baseline         AUC alou 17.37 st. 4 22.68 12.03 22.08 46.96 30.20 35.92 22.24 45.10 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>11 41.36<br>24 0.528<br>39 0.026<br>01 88.75<br>1 36.42<br>1 0.461<br>06 0.028<br>51 96.64<br>42.64<br>95 0.603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Baseline         AUC aIOU 17.37 53.14 22.68 12.03 22.08 46.96 30.20 35.92 22.24 45.10 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>11 41.36<br>44 0.528<br>39 0.026<br>01 88.75<br>1 36.42<br>1 0.461<br>06 0.028<br>51 96.64<br>42.64<br>96.603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AUC   86.16   92.00   88.45   63.82   82.10   93.82   94.71   85.87   94.46   93.35   88.2     SIM   0.599   0.758   0.530   0.275   0.437   0.711   0.536   0.580   0.594   0.678   0.62     MAE   0.089   0.044   0.095   0.133   0.081   0.055   0.024   0.088   0.049   0.042   0.08     MAE   0.899   0.779   88.23   77.92   93.12   95.83   93.38   83.03   94.65   94.28   87.3     SIM   0.607   0.779   0.536   0.410   0.531   0.751   0.528   0.600   0.598   0.681   0.67     MAE   0.092   0.044   0.101   0.127   0.060   0.055   0.026   0.090   0.052   0.044   0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27 88.48<br>49 40.76<br>28 0.523<br>88 0.020<br>37 95.26<br>11 41.36<br>24 0.528<br>39 0.026<br>01 88.75<br>11 36.42<br>11 0.461<br>106 0.028<br>51 96.64<br>42.64<br>52 0.603<br>52 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27 88.48<br>49 40.76<br>28 0.523<br>88 0.020<br>37 95.26<br>11 41.36<br>14 0.528<br>39 0.026<br>11 88.75<br>11 36.42<br>11 0.461<br>106 0.028<br>15 96.64<br>16 42.64<br>17 96.64<br>18 96.64<br>18 96.64<br>19 96.64<br>10                                                                                                                                                                                           |
| Baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27 88.48<br>49 40.76<br>28 0.523<br>88 0.020<br>37 95.26<br>11 41.36<br>24 0.528<br>39 0.026<br>01 88.75<br>11 36.42<br>11 0.461<br>106 0.028<br>51 96.64<br>42.64<br>55 0.603<br>57 98.99<br>6 40.28<br>18 0.594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AUC   86.16   92.00   88.45   63.82   82.10   93.82   94.71   85.87   94.46   93.35   88.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>11 41.36<br>14 0.528<br>39 0.026<br>01 88.75<br>1 36.42<br>1 0.461<br>06 0.028<br>1 96.64<br>42.64<br>65 0.603<br>02 0.017<br>65 98.99<br>66 40.28<br>18 0.594<br>19 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>11 41.36<br>44 0.528<br>39 0.026<br>01 88.75<br>1 36.42<br>1 0.461<br>06 0.028<br>31 96.64<br>42.64<br>35 0.603<br>92 0.017<br>35 98.99<br>40.28<br>8 0.594<br>92 0.014<br>8 98.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>41 41.36<br>44 0.528<br>39 0.026<br>01 88.75<br>1 36.42<br>1 0.461<br>06 0.028<br>61 96.64<br>42.64<br>65 0.603<br>02 0.017<br>65 98.99<br>66 40.28<br>88 98.69<br>36 36.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27 88.48<br>49 40.76<br>28 0.523<br>38 0.020<br>37 95.26<br>31 41.36<br>44 0.528<br>39 0.026<br>01 88.75<br>1 36.42<br>1 0.461<br>06 0.028<br>31 96.64<br>42.64<br>32 0.017<br>35 98.99<br>40.28<br>88 0.594<br>98.69<br>36 36.34<br>11 0.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



Figure 1. More Visualization Results of GREAT for Seen Setting.



Figure 2. More Visualization Results of GREAT for Unseen Setting. The first four rows for Unseen Object setting, and the last four rows for Unseen Affordance setting.



 $Figure\ 3.\ \textbf{Visualization}\ \textbf{Results}\ \textbf{of}\ \textbf{Partial}\ \textbf{Point}\ \textbf{Cloud.}$ 



Figure 4. Visualization Results of Rotated Point Cloud.

#### References

- [1] Emanuele Aiello, Diego Valsesia, and Enrico Magli. Crossmodal learning for image-guided point cloud shape completion. In *Advances in Neural Information Processing Systems*, 2022. 3, 4, 6
- [2] Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites. *arXiv preprint arXiv:2404.16821*, 2024. 2
- [3] Shengheng Deng, Xun Xu, Chaozheng Wu, Ke Chen, and Kui Jia. 3d affordancenet: A benchmark for visual object affordance understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021.
- [4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016. 1
- [5] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022.
- [6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. 2
- [7] Y. Li, N. Zhao, J. Xiao, C. Feng, X. Wang, and T. Chua. Laso: Language-guided affordance segmentation on 3d object. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. 3, 4, 5, 6
- [8] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019. 1
- [9] Jorge M. Lobo, Alberto Jiménez-Valverde, and Raimundo Real. Auc: a misleading measure of the performance of predictive distribution models. *Global Ecology and Biogeogra*phy, 17:145–151, 2008. 1
- [10] Toan Nguyen, Minh Nhat Vu, An Vuong, Dzung Nguyen, Thieu Vo, Ngan Le, and Anh Nguyen. Open-vocabulary affordance detection in 3d point clouds. 2023. 5
- [11] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. *arXiv preprint arXiv:1706.02413*, 2017. 1
- [12] Md.Atiqur Rahman and Yang Wang. Optimizing intersection-over-union in deep neural networks for image segmentation. In *International Symposium on Visual Com*puting, 2016. 1
- [13] Michael J. Swain and Dana H. Ballard. Color indexing. International Journal of Computer Vision, 7:11–32, 1991. 1,
- [14] Cort J. Willmott and Kenji Matsuura. Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. *Climate Re*search, 30:79–82, 2005. 1, 2
- [15] Xinli Xu, Shaocong Dong, Tingfa Xu, Lihe Ding, Jie Wang, Peng Jiang, Liqiang Song, and Jianan Li. Fusionrcnn: Lidar-

- camera fusion for two-stage 3d object detection. *arXiv* preprint arXiv:2209.10733, 2022. 3, 4, 6
- [16] Yuhang Yang, Wei Zhai, Hongchen Luo, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. Grounding 3d object affordance from 2d interactions in images. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 10905–10915, 2023. 3, 4, 5, 6