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A. Implementation Details
A.1. Method Details

We demonstrate dimensions and meanings of tensors in
the GREAT pipeline as shown in Tab. 1. For the im-
age branch, ResNet18 [4] is chosen as the feature extrac-
tor. The input image is randomly cropped and resized
to 224 × 224, producing image features with a shape of
Fi ∈ R512×7×7. A 1×1 convolutional layer is applied to
reduce the feature dimension and the feature is flattened
to Fi ∈ R512×49. For the point branch, each input point
cloud contains 2048 points. We employ pointnet++ [11],
which consists of three set abstraction (SA) layers, to pro-
gressively extract multi-scale point cloud features. Within
each SA layer, Farthest Point Strategy (FPS) is used to sam-
ple points, with the sampling counts set to 512, 128, and 64.
Ultimately, this branch outputs point features represented
as Fp ∈ R512×2048. Detailed prompts on Multi-Head Af-
fordance Chain-of-Thought (MHACoT) reasoning are pre-
sented below.

− Prompt One: “Point out which part of the object in the
image interacts with the person. If this part is different
from the part of the object shown in the image that per-
forms the main function, point out the part of the object
that performs the main function shown in the image.”

− Prompt Two: “Explain why this part can interact from
the geometric structure of the object. Just give the final
result in one sentence.”

− Prompt Three: “Describe the interaction between ob-
ject and the person in the image, including the interaction

Table 1. Tensors. The dimension and meaning of the tensors in
the pipeline.

Tensor Dimension Meaning

Fi 512× 7× 7 image extractor output
Fp 512× 64 point cloud extractor output

To, T̄o 1× 512 object geometric knowledge feature
Ta, T̄a 3× 512 affordance intention knowledge feature

F
′
p 512× 64 project Fp to a feature space

T̄
′
o 512× 1 project T̄o to a feature space

Po 512× 64 fused point features by Fp,T̄o

Ftp 512× 2048 upsampled fused point features by Po

Fti 512× 16 fused image features by Fi,T̄a

Fα 512× 2048 affordance feature representation
ϕ 2048× 1 3D object affordance

type, the interaction part of the object, and the interaction
part of the person. ”

− Prompt Four: “List two interactions that describe ad-
ditional common interactions that the object can interact
with people, including the interaction type, the interaction
part of the object, and the interaction part of the person.
”
We connect the answers of Prompt One and Prompt Two,
as well as the answers of Prompt Three and Prompt
Four, to obtain object geometric knowledge feature To ∈
R1×512 and affordance intention knowledge feature Ta ∈
R3×512 through the text encoder RoBERTa [8].

A.2. Evaluation Metrics

We employ four evaluation metrics to assess performance:
AUC [9], aIOU [12], SIM [13], and MAE [14]. A detailed
explanation of each metric is provided below:

− AUC [9]: AUC is a widely adopted metric for evaluating
saliency maps, treating them as binary classifiers across
varying thresholds. By computing the true and false pos-
itive rate at each threshold, it produces the ROC curve,
which captures the model’s classification performance.
In our work, AUC is utilized to evaluate the model’s
capability to differentiate between affordance and non-
affordance regions of an object with 2048 points.

− aIOU [12]: IOU is a critical metric for assessing the sim-
ilarity between two regions, widely employed to quantify
the degree of overlap between predicted and ground truth
regions. Its range is [0, 1], where 1 indicates perfect over-
lap and 0 signifies no intersection. IOU is defined as the
ratio of the intersection area to the union area of the two
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regions, formulated as:

IOU =
Intersection Area

Union Area
, (1)

The aIOU is defined as the mean IOU value computed
over multiple thresholds, formulated as:

aIOU =
1

T

T∑
i=1

IOUi, (2)

where T denotes the number of thresholds.
− SIM [13]: SIM measures the similarity between the pre-

diction map (P ) and the ground truth map (QD), formu-
lated as:

SIM(P,QD) =
∑
i

min(Pi, Q
D
i ),

where
∑
i

Pi =
∑
i

QD
i = 1.

(3)

− MAE [14]: MAE is a widely used metric for evaluat-
ing models, quantifying the deviation between predicted
and true values. It is calculated by averaging the absolute
differences between the predicted values and the corre-
sponding true values, as formulated as dividing the total
error by N :

MAE =
1

N

N∑
i=1

|yi − ŷi| , (4)

where yi denotes the ground truth, ŷi denotes the predic-
tion.

A.3. Training Details

In the fine-tuning process of MLLM, we exclusively fine-
tune the parameters of the injected learnable adapters [5],
while freezing the primary parameters of the InternVL [2].
The training is conducted out on two NVIDIA 3090 GPUs,
using a dataset of 7135 samples that are unseen in the test
sets across three different data settings. The model is trained
for 4460 iterations with a learning rate of 4e-5, a batch size
of 4, and a LoRA rank set to 16.

To ensure a fair comparison, we train our model and im-
plement all baseline methods under identical training set-
tings. Our model is built using the PyTorch framework and
optimized with the Adam [6] optimizer. The training epoch
is set to 65, with an initial learning rate of 1e-4 and a batch
size of 16. All training processes are conducted on two
NVIDIA 3090 GPUs. The image feature extractor lever-
ages pretrained parameters from ImageNet, the parameters
of text feature extractor are frozen, while the point cloud
feature extractor is trained from scratch. Furthermore, as
strict one-to-one pairing between images and point clouds

Table 2. Unseen Objects. The affordance and corresponding
number of images and point clouds for each object in the test set
under the Unseen Object setting.

Object Affordance Image Point

Scissors Cut, Grasp, Stab 130 410
Baseballbat Wrapgrasp 516 112

Mop Wrapgrasp, Clean 286 17
Clock Display 143 1009

Refrigerator Contain, Open 147 290
Bucket Contain, Lift 107 234

Motorcycle Ride 486 301
Fork Wrapgrasp, Stab 240 90

Skateboard Support 641 152
Laptop Display, Press 296 679
Kettle Contain, Grasp, Open, Pour 280 524

Table 3. Unseen Affordances. The object and corresponding
number of images and point clouds for each affordance in the test
set under the Unseen Affordance setting.

Affordance Object Image Point

Cut Scissors, Knife 366 425
Pour Bottle, Kettle, TrashCan, Mug 435 2945
Pull Suitcase 181 20
Lay Bed 289 779

Carry Backpack, Surfboard 377 118
Listen Earphone 365 710

is not required, we adopt an online pairing strategy dur-
ing training. In each training step, a single image can be
paired with n point clouds, effectively augmenting the train-
ing sample size. Considering both training efficiency and
model performance, we set n = 2 in our implementation to
strike an optimal balance.

B. Dataset
We provide a detailed description of the dataset partition-
ing process. PIADv2 consists of 43 object categories and
24 affordance categories. To validate the effectiveness
of GREAT for object affordance grounding in an open-
vocabulary scenario, we divide the dataset into three par-
titions: Seen, Unseen Object and Unseen Affordance. In
Seen, all object and affordance categories in the test set are
identical to those in the training set. In Unseen Object,
the affordances remain consistent with the training set, but
several objects are excluded from the training set. The fol-
lowing eleven objects are selected as the test set for unseen
object: “Scissors”, “Baseballbat”, “Mop”, “Clock”, “Re-
frigerator”, “Bucket”, “Motorcycle”, “Fork”, “Skateboard”,
“Laptop”, “Kettle”. The ratio of object categories between
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the training set and the test set is 32:11. The affordance cat-
egories corresponding to each unseen object, along with the
number of associated images and point clouds, are detailed
in the Tab. 2. Notably, a fixed one-to-one correspondence
is not required, as a single image can be paired with multi-
ple point clouds. In Unseen Affordance, the certain affor-
dances of object categories in the test set are not present in
the training set. Specifically, the following six affordances
are selected as the test set for unseen affordance: "Cut,"
“Pour”, “Pull”, “Lay”, “Carry”, “Listen”. Notably, the ear-
phone (which corresponds to the action “Listen”) and the
suitcase (which corresponds to the action “Pull”) are also
absent from the training set, further increasing the chal-
lenge for generalization. The ratio of affordace categories
between the training set and the test set is 18:6. The object
categories corresponding to each unseen affordance, along
with the number of associated images and point clouds, are
detailed in the Tab. 3.

C. Experiments

C.1. Details of Modular Baselines

We have selected two leading 3D object affordance ground-
ing methods, IAG [16] and LASO [7], which leverage either
the interaction image or the language guiding the interaction
to obtain additional contextual information. In addition, we
have chosen two of the top-performing image-point cloud
cross-modal learning methods compared in IAG, FRCNN
[15] and XMF [1] . These methods respectively extract fea-
tures from image and point cloud data and align or fuse the
extracted features. We reimplement the above four methods
across three data settings in PIADv2, where all compared
methods share the same feature extractor as our GREAT.

− Baseline: For the design of the baseline, we directly con-
nect the features output by the image and point cloud ex-
tractors, and then use the output head to predict the affor-
dance of 3D object point clouds, without any intermediate
steps to align features from different sources.

− FusionRCNN (FRCNN) [15]: This work tackles the
challenge of object recognition and localization caused by
the sparsity of point clouds in distant regions, proposing
a novel multi-modal two-stage approach. The method ef-
fectively integrates point cloud data and camera images in
the region of interest (RoI), adaptively combining sparse
LiDAR geometric information with dense camera texture
information within a unified attention mechanism.

− XMFnet (XMF) [1]: This work explores the problem of
point cloud completion using edge information provided
by a single image and shape priors. By combining self-
attention and cross-attention mechanisms, it effectively
fuses features from two different modalities, integrating
the information from both modalities into a local latent
space. It avoids the complex point cloud reconstruction

Table 4. Evaluation Metrics in Unseen Affordance. Results of
each affordance type for all comparison methods in the unseen
affordance setting.

Setting Metrics Carry Listen Lay Pour Cut Pull

Baseline

AUC 57.39 48.57 69.45 59.96 39.55 93.61
aIOU 7.33 3.43 6.85 6.08 4.25 31.42
SIM 0.237 0.152 0.324 0.184 0.105 0.348
MAE 0.147 0.221 0.131 0.145 0.208 0.054

FRCNN [15]

AUC 52.63 50.40 75.68 59.54 43.84 93.28
aIOU 5.39 3.23 10.70 6.17 4.62 29.58
SIM 0.178 0.157 0.411 0.179 0.098 0.371
MAE 0.17 0.20 0.12 0.14 0.20 0.04

XMF [1]

AUC 54.08 56.07 73.16 63.97 44.85 91.40
aIOU 5.89 3.89 10.93 6.85 5.77 24.52
SIM 0.195 0.216 0.399 0.187 0.115 0.349
MAE 0.158 0.179 0.130 0.130 0.213 0.050

IAG [16]

AUC 63.98 54.13 69.94 59.89 49.97 93.72
aIOU 8.10 3.71 10.47 4.92 4.40 38.27
SIM 0.239 0.221 0.402 0.146 0.148 0.562
MAE 0.142 0.168 0.130 0.146 0.175 0.028

LASO [7]

AUC 65.09 46.95 78.52 60.64 59.49 90.99
aIOU 7.22 2.20 10.23 5.93 9.61 23.60
SIM 0.262 0.116 0.404 0.152 0.196 0.350
MAE 0.138 0.209 0.126 0.124 0.158 0.043

Ours

AUC 82.13 51.36 77.53 72.82 52.21 97.39
aIOU 12.59 2.48 10.66 11.28 8.53 41.53
SIM 0.356 0.125 0.412 0.290 0.143 0.599
MAE 0.105 0.182 0.129 0.108 0.171 0.018

methods typically used in single-view techniques.
− IAGNet (IAG) [16]: This work leverages the human abil-

ity to perceive object affordance in the physical world
through demonstration images. It proposes a method
to locate 3D object affordance from 2D interactions in
images, aligning region features of objects from differ-
ent sources. Additionally, to resolve the ambiguity of
affordance, the dynamic factors involved in affordance
extraction are decomposed into interactions between the
subject-object and object-scene. Contextual modeling of
these interactions reveals explicit affordance.

− LASO [7]: This work explores the synergy with large
language models (LLMs) and proposes the setting of
language-guided 3D object affordance segmentation,
aiming to segment 3D object affordance based on given
expert-crafted questions. The method introduces an adap-
tive fusion module to identify target affordance regions at
different scales and utilizes a set of affordance queries
conditioned on linguistic clues to generate dynamic ker-
nels. These dynamic kernels are then convolved with
point cloud features to produce segmentation masks. We
use the InternVL to generate question descriptions for the
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Table 5. Evaluation Metrics in Unseen Object. Results of each object type in the unseen object setting. “Base.” denotes “Baseballbat”,
“Motor.” denotes “Motorcycle”, “Refri.” denotes “Refrigerator”, and “Scis.” denotes “Scissors”, “Skat.” denotes “Skateboard”.

Method Metrics Base. Bucket Clock Fork Kettle Laptop Mop Motor. Refri. Scis. Skat.

Baseline

AUC 69.28 51.67 75.62 79.28 60.89 74.15 85.81 76.78 82.72 57.15 72.47
aIOU 36.03 6.17 20.63 26.36 4.75 8.19 27.21 6.90 12.43 9.98 10.81
SIM 0.502 0.104 0.437 0.471 0.085 0.262 0.481 0.162 0.349 0.255 0.396
MAE 0.214 0.198 0.141 0.139 0.135 0.205 0.141 0.064 0.089 0.169 0.192

FRCNN [15]

AUC 76.40 57.24 82.14 83.09 41.29 72.25 90.13 59.18 82.06 64.49 79.72
aIOU 41.76 6.83 24.20 29.01 2.35 8.73 30.24 3.52 6.98 11.17 16.23
SIM 0.572 0.125 0.500 0.512 0.054 0.293 0.549 0.099 0.294 0.289 0.459
MAE 0.171 0.190 0.133 0.134 0.174 0.169 0.119 0.084 0.128 0.168 0.197

XMF [1]

AUC 76.75 59.73 77.86 81.93 61.74 73.52 79.09 69.02 84.22 56.31 81.80
aIOU 37.62 10.26 19.13 27.23 5.50 8.66 20.53 5.54 9.41 10.24 18.38
SIM 0.528 0.169 0.444 0.497 0.107 0.314 0.400 0.162 0.336 0.261 0.482
MAE 0.171 0.165 0.137 0.120 0.123 0.128 0.136 0.033 0.094 0.165 0.151

IAG [16]

AUC 85.32 65.52 69.21 73.63 54.38 78.17 92.09 79.74 80.63 56.62 58.84
aIOU 42.84 12.56 13.48 22.60 2.65 6.95 37.66 9.30 14.43 7.37 4.61
SIM 0.592 0.231 0.385 0.422 0.070 0.299 0.658 0.227 0.335 0.250 0.273
MAE 0.169 0.146 0.148 0.149 0.120 0.104 0.085 0.023 0.092 0.187 0.167

LASO [7]

AUC 73.99 52.61 80.64 85.83 63.68 69.20 87.21 72.21 72.70 58.26 73.91
aIOU 38.58 6.51 22.12 30.63 4.92 6.33 28.05 4.43 4.60 9.38 9.52
SIM 0.551 0.148 0.477 0.570 0.093 0.259 0.590 0.138 0.179 0.288 0.394
MAE 0.184 0.160 0.113 0.087 0.125 0.137 0.100 0.030 0.081 0.164 0.162

Ours

AUC 82.73 83.41 84.00 89.28 79.33 74.98 91.80 95.73 78.69 64.83 59.50
aIOU 41.93 28.75 20.23 31.83 7.33 5.17 32.37 17.79 13.45 12.97 8.72
SIM 0.584 0.469 0.486 0.567 0.182 0.242 0.612 0.356 0.294 0.283 0.324
MAE 0.148 0.081 0.111 0.135 0.048 0.130 0.104 0.033 0.073 0.159 0.149

input interactive images.

C.2. Detailed Metric Results

To thoroughly evaluate the performance of the GREAT
model, we present the results for each affordance or object
category under the three data settings. Compared to other
methods, our approach achieves optimal results across the
majority of affordance or object categories. For the unseen
affordance setting, we present results for each affordance
category that does not appear in the training set (Tab. 4).
For the unseen object setting, we provide results for each
object category that does not appear in the training set (Tab.
5). While for the seen setting, we present results for each
affordance category (Tab. 10). The experimental results
demonstrate that, under the same task settings, our model
exhibits strong robustness and excellent generalization ca-
pabilities, indirectly validating the rationality of the open-
vocabulary 3D object affordance grounding task setting.

C.3. More Visual Results

We present the visualization results of GREAT on three dif-
ferent partitions. Fig. 1 shows the results for seen set-
ting, while Fig. 2 presents the results for unseen object

and unseen affordance settings. The results demonstrate
that GREAT can accurately predict the affordance regions
of 3D object in diverse interactive images and across mul-
tiple object categories, highlighting its stability, robustness,
and generalization ability.

C.4. Partial and Rotated Results

Following the experimental setting proposed in [3] and [16],
we tested the model’s performance on partial and freely ro-
tated point clouds, simulating object occlusion and rotation
in daily environments. The corresponding visualization re-
sults are shown in the Fig. 3 and Fig. 4. The results
demonstrate that even when the point clouds contain only
partial object structures or are randomly rotated in space,
our model can still accurately predict the 3D affordance of
the object in open-vocabulary scenarios. This indicates that
the reasoning knowledge from 2D interactions provides cru-
cial cues that help the model understand the correlation be-
tween geometric structure and affordance. This capability
of the model provides strong support for robots to quickly
adapt to a wide range of real-world scenarios and respond
to changes in the operational environment, making it highly
effective for dynamic, real-world tasks.
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Table 6. Comparison on the PIAD. Evaluation metrics of comparison methods on the PIAD benchmark, ⋄ denotes the relative improve-
ment of our method over IAG method.

Seen Unseen Object Unseen Affordance

Methods AUC ↑aIOU ↑SIM ↑MAE↓ AUC ↑ aIOU ↑ SIM ↑ MAE↓ AUC ↑ aIOU ↑ SIM ↑ MAE↓

IAG [16] 82.88 18.88 0.544 0.098 68.49 ⋄1.3%7.22 ⋄3.7%0.344 ⋄2.3%0.139 ⋄8.6% 55.36 ⋄13.1%6.50 ⋄0.9%0.203 ⋄30.1%0.170 ⋄15.9%
Ours 85.22 19.61 0.569 0.093 69.41 7.49 0.352 0.127 62.59 6.56 0.264 0.143

Table 7. Comparison with OpenAD. Evaluation metrics of comparison methods on the PIADv2 benchmark, ⋄ denotes the relative
improvement of our method over OpenAD method.

Seen Unseen Object Unseen Affordance

Methods AUC ↑aIOU ↑SIM ↑MAE↓ AUC ↑ aIOU ↑ SIM ↑ MAE↓ AUC ↑ aIOU ↑ SIM ↑ MAE↓

OpenAD [10] 89.54 31.88 0.526 0.104 73.49 ⋄8.3%16.62 ⋄21.3%0.339 ⋄18.6%0.159 ⋄31.5% 61.22 ⋄14.0%8.00 ⋄50.6%0.229 ⋄26.6%0.167 ⋄23.9%
Ours 91.99 38.03 0.676 0.067 79.57 20.16 0.402 0.109 69.81 12.05 0.290 0.127

C.5. Computational Complexity

The comparison results of the computational complexity
metrics are presented in the Tab. 8, including model in-
ference time (MIT.), chain-of-thought inference time (CoT-
IT.), model parameters and trainable parameters. Although
the CoT-IT. is slightly longer, it results in performance gains
(Tab. 2 main paper), a trend also observed in LLMs like
GPT-O1 and DeepSeek-R1. We mitigate the real-time rea-
soning burden during training by pre-generating and storing
the CoT reasoning knowledge base, thereby significantly re-
ducing the computation overhead and training complexity.
Besides, fine-tuning MLLM only contains 25M trainable
parameters.

C.6. More comparative experiments

Benchmark fairness. To ensure the fairness of the bench-
mark, we train our method on PIAD and compare it to
IAG[16], as shown in Tab. 6. It is worth emphasizing that
all compared methods in Tab. 2 main paper are re-trained
on PIADv2. Our method shows excellent performance on
both PIAD and PIADv2.
Comparison with clip-based method. To clearly motivate
the needing of a big MLLM with respect to more compact
text-models, we compare with the OpenAD[10] method on
PIADv2, as shown in Tab. 7.
Combine two knowledge through one encoder. At the
level of method design, is it effective to combine “ob-
ject geometric properties” and “affordance interaction in-
tentions” through an encoder? For example, we combine
them through a text encoder in the unseen object partition,
resulting in performance degradation, as shown in Tab. 9.
Geometric attributes focus on object physical shape, while
interaction intentions focus on the functionality of an object
in a specific context. Forcing both into one encoder may
over-couple, resulting in confusing information and making
it difficult to capture the respective semantic features.

Table 8. Computational Complexity. MIT.: model inference
time. CoT-IT.: chain-of-thought inference time. Model Params.:
model parameters. Trainable Params.: trainable parameters.

Method MIT. CoT-IT. Model Params. Trainable Params.

IAG [16] 1.426s − 24.7M 24.7M
LASO [7] 1.336s − 130.5M 130.5M

Ours 1.272s 6.086s 256.7M 23.1M

Table 9. Combine two knowledge through one encoder. Eval-
uation metrics of our method with one encoder on the PIADv2
benchmark, ⋄ denotes the relative improvement of our method
over the method with one encoder.

AUC ↑ aIOU ↑ SIM ↑ MAE ↓

73.03⋄8.9% 17.95⋄12.3% 0.384⋄4.7% 0.113⋄3.5%

C.7. Application in robotics

We provide an explanation of how the proposed method can
be effectively applied to real robots.The training process of
the method involves establishing a mapping between 2D in-
teraction contents and 3D object regions, which is not lim-
ited to a specific instance. Once this mapping is established,
the input 2D interaction contents can be easily obtained in
various ways e.g., constructing a knowledge base or lever-
aging the large generative model like Stable Diffusion 3. To
build such a mapping that can generalize across instances,
the input image and point cloud keep a multi-to-multi pair-
ing during training. This allows the model to learn simi-
lar geometries of distinct instances, thereby improving the
model’s ability to generalize to real-world applications. Al-
though the interaction methods may be different, the inter-
action regions of objects are mostly consistent, through the
above manner, we enable the model to build this consis-
tency.
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Table 10. Evaluation Metrics in Seen. Results of each affordance type for all comparison methods in the seen setting. “Cont.” denotes
“Contain”, “Supp.” denotes “Support”, “Wrap.” denotes “Wrapgrasp”, and “Disp.” denotes “Display”.

Method Metrics Grasp Cont. Lift Open Lay Sit Supp. Wrap. Pour Move Disp. Push

Baseline

AUC 78.94 67.18 91.89 84.44 95.28 93.38 90.19 88.98 82.33 60.02 86.13 88.97
aIOU 28.79 13.25 44.09 24.82 44.29 36.07 32.90 47.28 18.66 11.72 31.73 7.15
SIM 0.501 0.363 0.546 0.399 0.728 0.654 0.684 0.715 0.356 0.347 0.597 0.545
MAE 0.087 0.130 0.055 0.062 0.059 0.066 0.095 0.086 0.086 0.166 0.097 0.069

FRCNN [15]

AUC 82.55 76.01 90.30 86.72 93.05 91.51 88.13 85.02 83.29 66.35 88.18 90.74
aIOU 28.32 15.29 33.77 24.94 39.00 33.18 31.71 45.14 17.38 16.45 33.21 10.08
SIM 0.506 0.419 0.421 0.390 0.680 0.628 0.684 0.704 0.337 0.442 0.636 0.492
MAE 0.093 0.129 0.083 0.070 0.073 0.075 0.097 0.091 0.099 0.145 0.091 0.072

XMF [1]

AUC 80.34 69.14 91.91 86.29 94.38 94.88 89.47 88.75 77.99 55.95 88.24 91.65
aIOU 25.53 14.25 41.91 25.46 44.51 36.96 32.45 46.01 17.33 9.07 31.38 7.94
SIM 0.489 0.382 0.512 0.411 0.729 0.689 0.688 0.710 0.340 0.307 0.623 0.576
MAE 0.092 0.128 0.053 0.071 0.061 0.061 0.092 0.083 0.098 0.164 0.091 0.067

IAG [16]

AUC 74.33 82.56 84.94 81.69 92.23 93.59 91.25 92.14 75.94 76.78 90.82 78.68
aIOU 20.30 20.23 28.70 24.61 38.37 34.67 33.91 48.05 22.48 17.32 34.20 6.06
SIM 0.447 0.529 0.417 0.403 0.672 0.652 0.712 0.745 0.404 0.514 0.673 0.493
MAE 0.107 0.111 0.070 0.070 0.074 0.066 0.091 0.078 0.101 0.125 0.082 0.073

LASO [7]

AUC 86.88 83.17 94.70 87.23 95.02 94.93 90.31 90.77 85.50 74.97 88.86 88.67
aIOU 30.37 19.39 48.06 23.04 42.19 37.41 30.51 48.44 19.67 22.03 33.17 12.00
SIM 0.560 0.507 0.570 0.389 0.724 0.684 0.685 0.750 0.375 0.534 0.628 0.550
MAE 0.081 0.118 0.051 0.069 0.063 0.062 0.101 0.083 0.083 0.133 0.091 0.072

Ours

AUC 88.33 87.83 96.88 89.82 95.03 95.52 91.61 90.43 93.98 89.42 90.56 86.77
aIOU 35.11 23.26 49.73 29.17 40.66 40.52 35.81 45.49 30.04 27.09 33.98 6.40
SIM 0.635 0.558 0.578 0.470 0.727 0.717 0.730 0.734 0.544 0.684 0.647 0.554
MAE 0.075 0.102 0.047 0.056 0.062 0.059 0.082 0.082 0.069 0.099 0.085 0.090

Method Metrics Listen Wear Press Cut Stab Carry Ride Clean Play Beat Speak Pull

Baseline

AUC 86.16 92.00 88.45 63.82 82.10 93.82 94.71 85.87 94.46 93.35 88.27 88.48
aIOU 17.37 53.14 22.68 12.03 22.08 46.96 30.20 35.92 22.24 45.10 39.49 40.76
SIM 0.599 0.758 0.530 0.275 0.437 0.711 0.536 0.580 0.594 0.678 0.628 0.523
MAE 0.089 0.044 0.095 0.133 0.081 0.055 0.024 0.088 0.049 0.042 0.088 0.020

FRCNN [15]

AUC 85.62 91.79 88.23 77.92 93.12 95.83 93.38 83.03 94.65 94.28 87.37 95.26
aIOU 17.19 53.48 22.86 14.17 30.03 49.26 28.78 37.48 22.02 44.03 43.11 41.36
SIM 0.607 0.779 0.536 0.410 0.531 0.751 0.528 0.600 0.598 0.681 0.674 0.528
MAE 0.092 0.044 0.101 0.127 0.060 0.055 0.026 0.090 0.052 0.044 0.089 0.026

XMF [1]

AUC 89.88 91.88 90.33 70.67 80.85 94.41 95.17 85.59 94.79 93.52 83.01 88.75
aIOU 21.00 51.46 23.40 16.19 24.74 49.79 30.12 35.38 22.38 45.26 39.11 36.42
SIM 0.684 0.760 0.571 0.423 0.407 0.743 0.552 0.556 0.610 0.675 0.611 0.461
MAE 0.076 0.044 0.092 0.116 0.081 0.053 0.025 0.096 0.052 0.041 0.096 0.028

IAG [16]

AUC 90.12 92.83 88.20 78.15 79.58 89.99 94.02 95.11 93.08 97.72 88.61 96.64
aIOU 20.22 51.79 21.66 14.81 35.26 40.68 28.96 37.49 21.14 45.27 41.54 42.64
SIM 0.668 0.767 0.532 0.504 0.503 0.657 0.534 0.644 0.574 0.708 0.635 0.603
MAE 0.082 0.043 0.100 0.101 0.063 0.067 0.024 0.065 0.054 0.032 0.102 0.017

LASO [7]

AUC 89.40 92.75 88.22 91.50 84.93 98.48 96.66 82.52 94.25 96.13 86.55 98.99
aIOU 19.58 54.16 22.08 19.04 34.72 52.77 28.25 25.26 21.70 42.70 41.16 40.28
SIM 0.649 0.773 0.522 0.632 0.510 0.779 0.547 0.427 0.575 0.680 0.648 0.594
MAE 0.082 0.043 0.104 0.073 0.060 0.045 0.023 0.119 0.054 0.039 0.092 0.014

Ours

AUC 91.90 92.00 90.96 86.42 88.32 98.84 98.60 89.79 96.04 97.86 89.18 98.69
aIOU 22.26 53.91 26.64 16.72 36.82 52.53 45.01 37.06 25.93 46.75 44.36 36.34
SIM 0.736 0.781 0.554 0.611 0.553 0.789 0.732 0.639 0.715 0.753 0.641 0.499
MAE 0.065 0.045 0.080 0.084 0.064 0.037 0.018 0.063 0.038 0.031 0.077 0.019
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Move Open Display

Open Wear Beat

Grasp Contain Wrapgrasp

Figure 1. More Visualization Results of GREAT for Seen Setting.
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Wrapgrasp Lift Display

Stab Ride Contain

Carry Lay Pour

Cut Pull Carry

Figure 2. More Visualization Results of GREAT for Unseen Setting. The first four rows for Unseen Object setting, and the last four
rows for Unseen Affordance setting.
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Open Wrapgrasp Listen Open Wrapgrasp Grasp

Figure 3. Visualization Results of Partial Point Cloud.

Lift Sit Open Wear Wrapgrasp Support

Figure 4. Visualization Results of Rotated Point Cloud.
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