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Figure S1. Ablation Study. We report accuracy and consistency metrics of our method on KITTI-360 with different ωω.
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Figure S2. More qualitative comparison for video depth estimation. Results on ScanNet++ dataset.

A. Details on Evaluation Protocol

Datasets. The sequences on KITTI-360 we chose follows
the rules below. Given the absence of ground-truth poses
for the initial frames of each sequence, we extracted frames
300-500, ultimately utilizing 200 frames for evaluation.

Metrics. To measure temporal consistency, we introduce
multi-frame consistency (MFC): given two depth maps
Dm, Dn → RW→H at frame m, n of the video sequence,
we unproject Dm into a point cloud; using the ground-truth
world-to-camera poses Pm, Pn → R3→4 for frames m, n’
camera, we transform the point cloud from frame m’ cam-
era space to frame n’ camera space, and project it onto
frame n’s image plane to yield Dm↑n. We measure tempo-
ral consistency as the average L1 distance between Dm↑n

and Dn. We mask out invalid pixels in both frames. In
practice, we calculate multi-frame consistency on adjacent
frames.

B. Detailed Proof on Mathematical Rigor and

Fluctuating Guidance

To ensure enough context information, we aim to
sample depth latents ẑ(dW :F ) conditioned on ẑ(d0:W ),
which is pω(ẑ(dW :F )|ẑ(d0:W )). For the replacement

trick, the sampling of ẑ(dW :F ) follows standard un-
conditional sampling from pω(ẑ

(d0:F )
t↓1 |ẑ(d0:F )

t
), where

ẑ(d0:F )
t

=
[
ẑ(d0:W )
t

, ẑ(dW :F )
t

]
. Crucially, samples ẑ(d0:W )

t

are replaced at each step by exact forward process samples
q(ẑ(d0:W )

t
|ẑ(d0:W )). This causes to update ẑ(dW :F )

t↓1 using
ẑ(dW :F )
t↓1,ω (ẑ(dW :F )

t
) ↑ Eq[ẑ

(dW :F )
t↓1 |ẑ(dW :F )

t
, ẑ(d0:W )

t
], while

what is needed instead is Eq[ẑ
(dW :F )
t↓1 |ẑ(dW :F )

t
, ẑ(d0:W )] =

Eq[ẑ
(dW :F )
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t
] +

(ω2
t
/εt)↓ẑ
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log q(ẑ(d0:W )|ẑ(d0:W )
t

). The missing
second term introduces dynamic guidance variations across
sampling steps. As for our context-aware strategy, we



Marigold DAv2 NVDS DC Ours
Inference Speed (s) 5.64 0.80 1.05 1.30 0.49

Compute (GB) 5.67 23.7 20.5 8.04 6.6
# of Parameters (B) 1.29 0.33 0.35 2.25 2.25

Training data # of frames 74K 62.6M 1.4M - 39K
# of scenes - - 14.2K 203K 938

Table S1. Speed and compute comparison.
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Figure S3. More qualitative comparison for video depth estimation. Results on KITTI-360 datasets.

can do conditional sampling from pω(ẑ
(d0:F )
t↓1 |ẑ(d0:F )

t
), with

ẑ(d0:F )
t

=
[
ẑ(d0:W ), ẑ(dW :F )

t

]
without forward process

q(·|·). As a result, ẑ(dW :F )
t↓1 is updated in the direction

provided by E[ẑ(dW :F )
t↓1 |ẑ(dW :F )

t
, ẑ(d0:W )].

C. Speed and Compute Comparison

Tab. S1 shows runtime, compute and model parameters.
ChronoDepth is significantly faster than Marigold [40]
and DepthCrafter (DC) [33], and requires a fraction of the
memory used by DepthAnything v2(DAv2) [76], thanks to
our more lightweight UNet architecture compared with the
baselines.

D. Additional Ablation

We investigate the significance of the small noise level ωε

in the context of overlapping frames within arbitrarily long
videos. As illustrated in Fig. S1, an excessively small ωε

results in degraded spatial and temporal performance due
to compounded errors. Conversely, an overly large ωε also
leads to diminished spatial and temporal performance. Con-
sequently, we opt for ωε = ↔4.

E. More Qualitative Results

We provide more qualitative comparisons from KITTI-360,
ScanNet++ and Bonn datasets in Figs. S2 to S4. First, we
highlight the remarkable spatial accuracy achieved by our
method, being comparable to or even better than the one
by state-of-the-art models. Furthermore, we can notice how
the y-t slice by most methods shows high-frequency arti-
facts, whereas ours is consistently smoother, confirming the
superior temporal consistency we achieve.

F. Limitation

Our method is robust to rapid ego-camera motion (Scan-
net++) and long video (KITTI-360). However, we observe
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Figure S4. More qualitative comparison for video depth estimation. Results on ScanNet++ and Bonn datasets.

a slight degradation in AbsRel when handling scenes with
abundant dynamic objects (Sintel). We attribute this to the
limited moving objects in the training data, which can be
extended in the future.
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