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1. Summary
In this supplementary material, Section 2 presents the detailed setup of the method, covering the baseline architecture,

computational resources, and relevant descriptions of the dataset. Section 3 provides the pseudo-code for the core algorithm.
For further analysis of our method, please refer to Section 4.

2. Detailed Settings
Baseline Architecture. Our baseline adopts a one-stream ViT-B [2] backbone using a template update mechanism. Let

Izr , I
z
t ∈ R3×Hz×Wz represent the RGB and infrared templates, Ixr , I

x
t ∈ R3×Hx×Wx represent the RGB and infrared search

regions, and Idr , I
d
t ∈ R3×Hz×Wz represent the RGB and infrared dynamic templates. All input images are first passed

through the PatchEmbed [2] layer to convert them into token sequences, yielding P z
r , P

z
t , P

d
r , P

d
t ∈ RNz×C , P x

r , P
x
t ∈

RNx×C where Nz, Nx denote the number of RGB and infrared tokens, respectively. C represents the channel dimension.
Subsequently, the token sequences of the two modalities are concatenated to form {P z

r ;P
z
t ;P

x
r ;P

x
t ;P

d
r ;P

d
t }, which is then

fed into the backbone for joint feature extraction. In the output stage, the features of the search regions are processed by a
convolutional head [15] to generate the final results. For template updates, our baseline utilizes a score prediction head [1] to
predict the confidence of objects and performs updates to P d

r , P
d
t based on a threshold.

Computing Environments. All of our experiments are conducted on a server running Ubuntu 22.04, equipped with an
Intel(R) Xeon(R) Platinum 8276 CPU @ 2.20GHz, and accelerated by 10 NVIDIA A40 GPUs, each with 48GB of memory.
The software environment is configured with Python 3.8.18, PyTorch 1.11.0, and CUDA 11.3 for our computational tasks.

Implementation Details. The baseline is trained using a two-stage method. In the first stage, four A40 GPUs are used.
The batch size is 32, the learning rate is set to 1× 10−4, and 60,000 images are sampled for each epoch, totalling 15 training
epochs. In order to learn the image-matching ability, all the parameters except the score prediction head are trained during
this stage. At the 11th epoch, the learning rate is reduced to one-tenth of its original value. The AdamW [9] optimizer with
a 1 × 10−4 weight decay is adopted for model optimization. The size of the search images is 256 × 256, and the sizes of
both the template and online template images are 128× 128. In the second stage, the training is only conducted on one A40
GPU. The learning rate is set to 1× 10−4, the batch size is 64, and 20,000 images are sampled for each epoch, totalling five
epochs. At the third epoch, the learning rate is reduced to one-tenth of its original value, and other settings are the same as
those in the first stage. In this stage, only the score prediction head is trained using positive and negative samples to learn the
classification ability. Both stages of training use the LasHeR [6] training set. In addition, our parameter decomposition refers
to the method in [14]. For parameter selection, we suggest setting its initial value as the BatchNorm layer’s momentum in the
fast parameter update step, tuning it step-by-step while suspending other strategies. The parameter decomposition recovery
step starts with small learning rates ηµ and ησ and adjusts for optimal performance. For adaptive momentum scaling, base ξ
and mλ on paper-given best values, be cautious with the truncation intervals of r and the final momentum value, and ensure
the final momentum value’s truncation interval is adjusted when modifying the basic value of momentum m.

Detailed Setup of Dataset Corruption. We evaluate the robustness and adaptability of our method under significant
distribution shifts by corrupting images in the dataset. Specifically, we introduce controlled perturbations by shifting the
brightness, contrast, saturation, and hue of each frame in the dataset. As shown in Table 1, our dataset corruption includes
three different levels. The severity of image corruption progressively increases by applying random perturbations within a
specified range for each attribute. Figure 1 shows the visualization of image corruption in the search region at different levels.
This approach introduces a high degree of variability, challenging the model’s performance under extreme and unpredictable
conditions, thereby providing a comprehensive assessment of our method’s performance in the face of severe environmental
disturbances.

2.1. Datasets

GTOT [4]. As the first benchmark designed explicitly for RGB-T tracking, the GTOT dataset comprises 50 carefully
matched pairs of video sequences, each consisting of an infrared video and its corresponding grayscale video. These videos
cover various shooting environments, including laboratories, campus roads, and playgrounds, providing a rich array of testing
scenarios for various tracking algorithms.
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Figure 1. Visualization of image corruption. Our image corruption includes three levels, and as the severity increases, the images exhibit
progressively more pronounced distortions.

RGBT210 [7]. The RGBT210 dataset comprises 210 precisely annotated pairs of RGB and infrared videos, offering
more than 210,000 frames in total. For each tracked object, the dataset supplies ground truth annotations. Additionally, it
highlights 12 unique attributes, including deformation and fast motion, which allow for a detailed performance analysis of
tracking algorithms based on specific characteristics.

RGBT234 [5]. The RGBT234 dataset comprises 234 precisely aligned pairs of visible and infrared video sequences and
encompasses approximately 234,000 frames, with individual video sequences reaching up to about 8,000 frames in length.
Not only does RGBT234 expand the scope of available data, but it also emphasizes the provision of detailed annotation
information, covering up to 12 distinct attributes.

LasHeR [6]. The LasHeR dataset is a large-scale RGB-T tracking dataset, encompassing 1,224 pairs of RGB and infrared
videos, totalling over 734,800 frame pairs. All frame pairs are spatially aligned and manually annotated with bounding
boxes, ensuring high-quality and dense annotations. The dataset covers many object categories, multiple camera perspectives,
complex scenes, and varying environmental factors, including different seasons, weather conditions, and day-night variations,
showcasing a high degree of diversity.



Table 1. Detailed setup of dataset corruption.

Severity Attribute
Brightness Contrast Saturation Hue

1 [0.50, 2.00] [0.50, 2.00] [0.50, 2.00] [-0.20, 0.20]
2 [0.33, 3.00] [0.33, 3.00] [0.33, 3.00] [-0.30, 0.30]
3 [0.25, 4.00] [0.25, 4.00] [0.25, 4.00] [-0.40, 0.40]

2.2. Evaluation Metrics

Precision Rate. The precision rate (PR) measures the accuracy of the predicted object location by calculating the Eu-
clidean distance between the centers of the tracking bounding box and the ground truth bounding box. The precision rate
is the proportion of frames in which the distance between the tracking result and the actual position is less than a given
threshold. The formula for the precision rate is:

PR =
1

N

N∑
t=1

δ(ct < ξpr), (1)

where ct is the distance between the predicted and ground truth center locations in frame t, N represents the total number of
frames, δ(·) is the indicator function, and ξpr denotes the threshold.

Success Rate. The success rate (SR) evaluates the overlap between the predicted and ground truth bounding boxes. It
is determined by the percentage of frames in which the Intersection over Union (IoU) exceeds a specified threshold. The
formula for success rate can be expressed as:

SR =
1

N

N∑
t=1

δ(IoUt ≥ ξsr), (2)

where IoUt represents the IoU between predicted and ground truth bounding boxes in frame t, and ξsr indicates the threshold.
Maximum Precision Rate. The maximum precision rate (MPR) addresses alignment errors between RGB and infrared

images. It evaluates precision using the smaller distance between the ground truth and predicted bounding box centers of
RGB and infrared images.

Maximum Success Rate. The maximum success rate (MSR) is also designed to address alignment errors. It evaluates
the success rate using the larger IoU between the ground truth and predicted bounding box of RGB and infrared images.

3. Algorithm
In this section, we provide a detailed introduction to the three components that underpin our research, illustrated with

pseudo-code for their specific implementation steps. These components are fast parameter update (Algorithm 1), parameter
decomposition recovery (Algorithm 2), and adaptive momentum scaling (Algorithm 3).

Algorithm 1 Fast Parameter Update

Require: Initial training mean µ̂0 and variance σ̂2
0

Require: Momentum parameter m
Require: The number N of elements of each test data
Require: A sequence of sample test data x1, x2, ..., xT

Initialize: µ̂← µ̂0, σ̂2 ← σ̂2
0

for t = 1 to T do
Calculate the mean and variance for the current data:
µt ←

∑
xt/N

σ2
t ←

∑
(xt − µ)2/ (N-1)

Update the running mean and running var:
µ̂← (1−m) · µ̂+m · µt

σ̂2 ← (1−m) · σ̂2 +m · σ2
t

end for



Algorithm 2 Parameter Decomposition Recovery

Require: Model recovery interval K
Require: Learning rates ηµ, ησ

Initialize pseudo-gradient set Θ← ∅
for each frame t = 1, 2, 3, ... do

Obtain the updated µ̂ and σ̂2 from Algorithm 1
Obtain µt−1 and σ2

t−1 calculated by Algorithm 1
Construct pseudo-gradient set:
∇p ← {µ̂− µt−1, σ̂

2 − σ2
t−1}

Θ← Θ ∪ {∇p}
if t mod K = 0 then

Perform decomposition for pseudo-gradient set:
Θ̄← Θ−mean(Θ)

λ, z ← SVD
(

1
K−1Θ̄

⊤Θ̄
)

Calibrate and accumulate principal directions:
∇θ ← {µt−K − µt, σ

2
t−K − σ2

t }
ẑ ← N2

(
Θ̄⊤z

)
· ∥∇θ∥2

∇p̂ ←
∑
N2 (λ) · δ (∇θ · ẑ) · ẑ

Recover parameters:
µ̂t ← µ̂t−1 + ηµ · ∇(µ)

p̂

σ̂2
t ← σ̂2

t−1 + ησ · ∇(σ)
p̂

Reset pseudo-gradient set
Θ← ∅

end if
end for

Algorithm 3 Adaptive Momentum Scaling

Require: Initial momentum m
Require: Momentum parameter mλ

Require: Model recovery interval K
Require: Threshold parameter ξ
Require: Truncation function T (·)

Initialize: λ̄← 0
for each frame t = 1, 2, 3, ... do

if t mod K = 0 then
Obtain the eigenvalues λ from Algorithm 2
Compute the sum of eigenvalues:
λ←

∑
λ

Update the exponential moving average of λ:
λ̄← (1−mλ) · λ̄+mλ · λ

Calculate the scaling factor:
∆λ← |λ− λ̄|
r ← T (ξ −∆λ)

Update the momentum:
m̂← T (r ·m)

end if
end for



Table 2. Attribute-based MPR/MSR scores (%) on the LasHeR→RGBT234 scenario compared with several state-of-the-art trackers. The
best results are highlighted in bold.

Attribute ViPT [16] TBSI [3] MPLT [10] No Adap. PURA

NO 92.4/71.0 96.2/73.9 97.7/74.8 96.6/73.8 98.0/76.1
PO 85.4/63.0 88.6/66.1 88.5/65.5 93.7/70.4 94.0/71.7
HO 77.6/56.3 83.8/61.9 84.1/61.7 85.2/62.1 90.6/66.3
LI 81.0/58.4 88.3/65.2 87.6/64.4 92.5/68.3 94.6/70.9
LR 83.1/59.4 85.6/62.2 87.6/62.8 88.3/63.4 91.2/66.5
TC 83.0/62.2 86.2/65.1 85.0/64.2 89.9/67.4 91.1/68.4

DEF 81.7/62.2 84.6/65.0 85.8/65.4 89.2/67.9 91.8/70.4
FM 80.3/58.6 82.3/61.1 83.5/61.8 86.1/63.7 90.5/67.7
SV 83.8/63.0 89.3/67.6 89.0/67.2 92.0/69.5 93.7/71.9
MB 83.2/62.6 89.2/67.7 86.1/64.8 87.1/65.9 91.7/69.3
CM 83.0/62.1 87.0/66.0 86.9/65.3 89.9/67.5 91.8/69.0
BC 79.6/55.7 83.9/59.9 84.5/60.4 82.3/58.2 88.3/63.1

ALL 83.5/61.7 88.0/65.8 88.4/65.7 90.8/67.6 93.3/70.3

Table 3. Attribute-based PR/SR scores (%) on the LasHeR→RGBT210 scenario compared with several state-of-the-art TTA methods. The
best results are highlighted in bold.

Attribute Tent [12] ETA [11] CoTTA [13] AdaBN [8] PURA

NO 94.9/73.8 94.6/73.8 95.4/74.2 94.8/73.7 94.9/73.8
PO 91.1/68.4 91.4/68.5 90.8/67.7 91.2/68.2 91.5/68.6
HO 86.5/62.2 85.6/61.2 82.9/59.5 84.9/60.6 87.1/62.0
LI 91.7/67.2 89.2/65.5 88.8/65.4 89.1/65.0 91.5/67.1
LR 76.3/52.7 81.9/55.9 84.6/57.7 78.4/53.9 83.1/56.6
TC 85.6/64.3 87.4/65.3 84.5/63.3 87.0/65.0 89.0/66.4

DEF 88.3/66.9 88.8/66.8 88.3/66.6 88.0/66.4 89.5/67.2
FM 83.7/61.2 87.1/63.3 87.6/63.2 86.1/63.2 88.9/64.0
SV 90.6/69.1 90.5/69.1 89.4/68.0 89.9/68.4 91.1/69.2
MB 84.7/62.9 85.2/62.9 85.6/62.8 83.9/62.0 85.7/63.2
CM 86.4/63.9 87.8/64.4 85.6/62.8 88.0/64.5 88.1/64.6
BC 82.9/57.9 82.3/57.0 79.2/54.9 80.2/55.4 84.3/58.2

ALL 89.9/66.8 89.6/66.4 88.4/65.4 89.2/66.0 90.3/70.3

Table 4. Attribute-based MPR/MSR scores (%) on the LasHeR→RGBT234 scenario compared with several state-of-the-art TTA methods.
The best results are highlighted in bold.

Attribute Tent [12] ETA [11] CoTTA [13] AdaBN [8] PURA

NO 97.9/76.1 96.6/75.2 97.9/76.2 96.6/74.9 98.0/76.1
PO 92.0/70.4 93.5/71.5 92.9/70.7 94.0/71.7 94.0/71.7
HO 88.8/65.2 89.0/65.3 86.5/63.1 87.1/63.8 90.6/66.3
LI 91.9/69.1 93.1/70.1 90.6/68.7 92.0/69.1 94.6/70.9
LR 89.1/65.0 88.7/64.9 90.1/65.4 90.2/65.6 91.2/66.5
TC 88.7/67.2 88.6/67.3 87.3/66.0 88.3/67.0 91.1/68.4

DEF 90.1/69.2 91.2/70.0 88.3/67.8 90.0/69.2 91.8/70.4
FM 87.1/65.1 86.1/64.8 89.4/66.6 86.2/64.6 90.5/67.7
SV 91.7/70.6 93.3/71.6 92.5/70.9 91.4/70.3 93.7/71.9
MB 89.4/67.3 89.1/67.8 89.8/67.6 87.8/66.8 91.7/69.3
CM 89.3/67.0 89.7/67.6 89.7/67.3 89.8/67.7 91.8/69.0
BC 84.4/60.7 86.1/61.8 84.6/59.8 84.9/60.6 88.3/63.1

ALL 91.8/69.3 92.3/69.7 91.2/68.6 91.6/69.1 93.3/70.3
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Figure 2. Qualitative comparison of our method with other RGB-T trackers across four representative sequences in the RGBT234 dataset.

4. Further Analysis
Analysis Across Various Attributes. We conduct a more comprehensive performance analysis of various methods across

two datasets: RGBT210 [7] and RGBT234 [5]. Table 2 presents the detailed attribute-based performance of PURA in the
LasHeR→RGBT234 scenario. Table 3 and Table 4 respectively show the detailed attribute-based performance of PURA
compared to other TTA methods in the LasHeR→RGBT210 and LasHeR→RGBT234 scenarios. The experimental results
indicate that PURA outperforms existing methods in most attributes. Particularly in challenging scenarios, our method
demonstrates consistent superiority, with its robustness and adaptability being especially prominent.

Qualitative Comparison. We conduct a qualitative comparison of our method with other RGB-T trackers. As shown in
Figure 2, we select four representative sequences from the RGBT234 dataset that encompass various challenges, including
scale variations, occlusions, and fast motion, to evaluate the performance of different methods. For instance, in the second
sequence, despite the rapid movement of the target leading to swift changes in the background, our method still demonstrates
outstanding stability and accuracy. Additionally, our approach successfully addresses several common challenges in the other
sequences. These results indicate that our proposed method, PURA, exhibits superior adaptability. To visually emphasize
the advantages of our method over existing approaches in challenging attributes, we provide additional visualization results.
Figure 3 shows the tracking results of the target under low light conditions. Figure 4 shows the tracking results of the target
under partial occlusion conditions. Figure 5 shows the tracking results of the target under motion blur conditions.
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Figure 3. Qualitative comparison of various methods under low light conditions in the LasHeR → RGBT234 scenario.
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Figure 4. Qualitative comparison of various methods under partial occlusion conditions in the LasHeR → RGBT234 scenario.
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Figure 5. Qualitative comparison of various methods under motion blur conditions in the LasHeR → RGBT234 scenario.
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