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1. Comparison with transformer-based rPPGs

Admittedly, we propose the remote photoplethysmography
(rPPG) framework based on the Swin vision transformer, in
order to validate that our performance and innovation come
from the improvement of the learning manner and the dis-
entanglement strategy, rather than relying solely on the self-
attention and the temporal linear complexity mechanisms
of the transformer structure, we compare our approach with
two recent rPPG models (PhysFormer++ [1] and Rhythm-
Former [2]) based on the transformer architecture, and draw
their scatter plots of the heart rate (HR) estimation results in
Fig. 1. Specifically, we report the results from HR measure-
ments of 2,000 random time periods, the training data is the
joint MR-NIRP-IND [3] and MR-NIRP-DRV [4] datasets
(MR-NIRP), and the test set is the outdoor driving condition
of the MR-NIRP-DRYV dataset to prove our improvements in
the more challenging environment. At can be seen that the
remote perceptual results of our algorithm are closer to the
ground truth (GT) values, and more values are in the GT+6
beats per minute (bpm) space. This serve as a useful illus-
tration of our paradigm and its ability to mine high-quality
physiological cues.

2. Visualization of pulse and HR predictions

As a complement to HR prediction and ablation studies to
verify the scientific rationality of our architecture and set-
tings, we discuss the performance of the core component of
our method, that is the interference disentanglement mod-
ule. Specifically, we compare the full model with the VIPL-
HR dataset [5] learning results without the disentanglement
module (w/o ND), and plot visualizations of one-minute HR
sensing, as shown in Fig. 2. At the same time, to fully dis-
cuss the impact of the time window length on the prediction,
we set the raw 320-frame time dimension of the spatiotem-
poral map (STMap) of the undisentangled input to 300, 280,
260, 240, 220, 200, 180, 160, and 140 frames, respectively
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Figure 1. Our framework improves upon the state-of-the-art vision
transformer-based rPPG models.

(as shown by the corresponding light green lines). In addi-
tion, we also draw our blood volume pulse (BVP) prediction
results in Fig. 3 to better reflect the tracking ability of our
algorithm for physiological signals. It can be observed that
although increasing the input time length can improve the
model’s fit to BVP, thereby improving the ability of perceive
biosignals and further optimization remote HR recognition.
However, without the introduction of the disentanglement
architecture, the results under insufficient time dimension
still show similar trends, and they have difficult in properly
mining certain complete heartbeat cycles and peaks, so their
HR estimation performances are also generally poor.

3. Computational performance analysis

As a supplement to the effectiveness analysis, we compre-
hensively compare all the latest representative deep rPPG
technologies we have discussed in our main paper, includ-
ing convolutional network-based methods (DeepPhys [6],
TS-CAN [7], Dual-GAN [8], PFE-TFA [9], NEST [10], and
ND-DeeprPPG [11]) and vision transformer-based meth-
ods (EfficientPhys [12], PhysFormer++ [1], and Rhythm-
Former [2]). The model parameters, the floating point oper-
ations per second (FLOPs), the computing time on the RTX
4090 GPU device, and the root mean square error (RMSE)
prediction results of the VIPL-HR dataset [5] are listed in
Tab. 1. Among them, for the approaches that take the facial



4
301 :

0 10 20 30 40 50 6
90

[y — T [— 90 —ar
— g0 — wioND 80| — woND 80 — wioND
ESl—o ol = ows bt “om
260 60 60 | e
« 50 50 50
a0 40/ 40

30

0 0 10 20 30 40 50 6

%0/

0

& 50 — ¢ 50 — 50 -
— wioND
— ous — ours — ous
0 10 20 3 4 50 6 0 10 2 30 40 50 60 0 10 20 30 40 50 60
Time (second) Time (second) Time (second)

Figure 2. HR estimation within a one-minute facial video segment
and comparison with and without the disentanglement module.
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Figure 3. BVP prediction within a 320-frame time sequences and
comparison with and without the disentanglement module.

video segment as input, the input scale is 3x320x64 x 64
(color channel, input video segment length, frame height,
and frame width), and for the methods that take the STMap
as input, the input scale is 3x64 x320 (color channel, map
height, and video segment length). In addition, we also list
the relevant results of the convolutional architecture based
on our paradigm (Ours-Conv). It can be seen that, benefit-
ing from our framework layout, while effectively improving
performance, our network is more lightweight and efficient
for the practical deployment of diversity downstream tasks
of remote physiological perception.

4. Ablation study on boosting disentanglement

Our method is based on the boosting algorithm design idea,
and proposes corresponding elimination strategies for gen-
eral noise and extreme interference. In order to verify the
scientificity and rationality of each of our main modules
separately, we follow the training and verification in Sec. 1,
and calculate our full model and compare it with the mod-
els without the spatiotemporal biological prior-based slid-
ing window enhancement (w/o ST) and the interference dis-
entanglement (w/o ND). The HR estimation scatter plots of
2,000 random complex scenes under outdoor conditions in
the MR-NIRP-DRV dataset [4] are shown in Fig. 4. On the
left side is the ablation of spatiotemporal denoising and re-
duction for general noise and motion, and on the right side

Table 1. Computational cost and performance comparison, where
J means the smaller the better, and the best result is bolded (the
same below).

rPPG Methods Parameter FLOPs  RTX 4090 | RMSE]
DeepPhys [6] 146 M 64.86 G 6.27 ms 13.80
TS-CAN [7] 391M  110.15G 5.52 ms 14.59
Dual-GAN [8] 6.17M  302.14G  24.65ms 7.68
PFE-TFA [9] 1.31M 79.60G  36.48 ms 8.65
NEST [10] 13.82M 311G 11.27 ms 7.96
ND-DeeprPPG [11] 6.05M  320.08 G 29.87 ms 7.52
EfficientPhys-T1 [12] | 15.73M  34520G  26.64 ms 8.25
PhysFormer++ [1] 9.79 M 49.85G 217.07 ms 7.62
RhythmFormer [2] 325M 3949G  29.49 ms 7.49
Ours-Conv 2.85M 32.11 G 25.43 ms 7.50
Ours 6.03M 53.04 G 24.64 ms 7.09
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Figure 4. Illustration of a comparative study of our boost design.

is the self-supervised disentanglement of extreme interfer-
ence. It can be seen that our solution can not only effec-
tively improve the detection performance, but also has more
obvious advantages in processing marginal HR estimation
points (such as very low and very high GT values) to ensure
that HR measurements are captured correctly and the net-
work doesn’t overfit. Meanwhile, it can also be found that
the improvement of model performance by the interference
disentanglement paradigm is more intuitive.

5. Ablation study on loss hyperparameters

To illustrate the rationality of our settings, Fig. 5 shows a set
of control experiments on the hyperparameters of the over-
all loss function Liogal:

Liotal :a£r+6£c+7£p7 (D

We report the RMSE results on the VIPL-HR dataset [5]
trained models with different combinations of «, 3, and ~
of L, L, and L, for the whole loss function in the main
paper. We fix one certain hyperparameter value to verify the
performance of the remaining values to select the best com-
bination. It is worth mentioning that when (3 is 0, our model
can be regarded as a network that does not using the interfer-
ence disentanglement module and is adapted to the current
general rPPG framework. Furthermore, the verification of



Table 2. Comparison of our rPPG method with the facial skin reflectance baseline under multiple illumination modalities and quantifiable

patterns.
VIPL-HR [5] BUAA-MIHR [13]
Models Studio illumination Lux
Lamp Bright Dark | 10%° 10°2 10%T 109¢ 10°% 10™Y 102 107 10%° 10% 1027
POS [14] 16.59 17.38 17.64 | 74.31 5733 40.31 16.17 849  4.88 846 996 8.03 13.04 442
Ours w/o ND 7.57 8.84 9.08 | 1578 1374 933 739 261 143 238 1.50 1.37 1.71 1.15
Ours 6.53 7.83 811 | 5.04 397 268 235 128 109 136 116 123 1.12 1.22
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In order to verify the impact of illumination of our measured
results and our insensitivity to lighting conditions, we split
two datasets, VIPL-HR [5] and BUAA-MIHR [13], which
contain multiple illumination variations, according to the
subjects and test them under different illuminations. Among
them, the illumination design of the VIPL-HR dataset is to
qualitatively distinguish modes, namely general illumina-
tion (the studio light source, “Lamp”), bright scene (the fil-
ament lamp is turned on, “Bright”), and dark situation (the
ceiling lamp of the room is turned off, “Dark’). The illu-
mination of the BUAA-MIHR dataset is quantifiable, and it
subdivides the captured videos into eleven modes ranging
from 10 to 102 lux in intervals of 10%2. We report the
RMSE results of our full model and the model without the
disentanglement module on their remote measurements in
Tab. 2. At the same time, as a benchmark for verifying illu-
mination, we introduce the plan-orthogonal-to-skin (POS)
method [14] followed by Xi et al. [13] as a quantitative ref-
erence for feedback of skin light reflectance under different
illuminations. It can be seen that our method is insensitive
to illumination and contrast under dynamic lighting.

7. Implementation datasets

We construct the proposed network’s training, testing, and
validation of time-varying interference disentanglement on
four of the most popular publicly available remote physio-
logical monitoring datasets, which are BUAA-MIHR [13],
VIPL-HR [5], MR-NIRP-IND [3], and MR-NIRP-DRYV [4].
Specifically, the BUAA-MIHR dataset has 165 one-minute
facial videos of thirteen participants, divided into eleven il-
lumination modes (10°-°, 10°-2, 1094, 10°-6, 10°-8, 10'0,
102, 10%4, 1016, 1018, and 102° lux, respectively) with
precise lighting span. Its frame rate is 30 frames per second
(fps), resolution is 640x480 pixels, and has corresponding
BVP waveform and same frequency HR value labels. The
videos are collected by a Logitech HD pro webcam C930E

Figure 5. Illustration of the loss function hyperparameter settings.

color camera, and the physiological signals are obtained by
a CONTEC CMS50E finger clip sensor.

The VIPL-HR dataset covers 2,379 visible light facial
videos of 107 subjects, divided into three acquisition modes
and nine dynamic conditions, with corresponding BVP and
HR labels to meet the situations encountered in real-world
daily life. Among them, the three video acquisition patterns
are recorded by a Logitech HD C310 web-camera (25 fps
and 960x 720 resolution), a HUAWEI P9 frontal camera (30
fps and 1920 x 1080 resolution), and a RealSense F200 cam-
era (30 fps and 1920x 1080 resolution), respectively. The
nine dynamic modes include stable scenario, motion sce-
nario, talking scenario, dark scenario, bright scenario, long
distance scenario, exercise scenario, phone stable scenario,
and phone motion scenario. Although all videos are shot in-
doors, it strives to simulate real scenes and is currently the
largest and most important rPPG dataset.

The MR-NIRP-IND dataset contains 1,914 seconds of
still and moving visible light facial data (RGB) and cor-
responding near-infrared imaging data (NIR) of eight sub-
jects, with the frame rate of 30 fps, the frame resolution
of 640x640 pixels, and corresponding BVP signal labels.
Furthermore, the RGB camera is a FLIR Blackfly BFLY-
U3-2356C-C, and the NIR camera is a Grey Grasshopper
GS3-U3-41C6NIR-C equipped with a narrow-band 940 nm
bandpass filter.

The MR-NIRP-DRYV dataset extends the data scale of the
former to eighteen subjects and 30,198 seconds, covering
outdoor driving, day and night changes, with correspond-
ing NIR maps. Its ground truth label, RGB camera, frame
rate, and resolution are consistent with the MR-NIRP-IND
dataset, while its NIR additionally introduces 975 nm band-
pass. The scene settings of the MR-NIRP-DRYV dataset are
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Figure 6. Illustration of sample variations from the four datasets.

very diverse, and each subject recorded six types of video:
driving large motion, driving small motion, driving still,
garage large motion, garage small motion, and garage still.
The lighting changes in driving are complex, time-varying,
diverse, and extreme. To the best of our knowledge, it is the
largest dataset currently available for pure outdoor scenes
and dynamic lighting. Representative participant examples
and modalities of these datasets are shown in Fig. 6.
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