
Appendix

Supplementary Material

9. Temporal Logic Operation Example
Given a set of atomic propositions P = {Event A,
Event B}, the TL specification ! = ↭ Event A (read as
“Always Event A”) means that ‘Event A’ is True for every
step in the sequence. Additionally, ! = → Event B (read as
“eventually event b”) indicates that there exists at least one
‘Event B’ in the sequence. Lastly, ! = Event A U Event
B (read as “Event A Until Event B”) means that ‘Event A’
exists until ‘Event B’ becomes True, and then ‘Event B’
remains True for all future steps.

10. Prompt Understanding via Temporal Logic
Specification (PULS)

In order to obtain Dtrain, we first begin with the larger
dataset D with size B where D = DT2P ↑ DT2TL. DT2P
and DT2TL are defined as the following:

DT2P = {(Ti,Pi)}Bi=1, DT2P ↓ D, (11)

DT2TL = {(Ti,Pi,!i)}Bi=1, DT2TL ↓ D. (12)

Using these datasets, we use PULS to find a specification
! for each mode and for a given text prompt T using the
following algorithm.

Algorithm 2: PULS
Require: LLM Prompt Optimizer MIPROv2
Input: List of mode M , text prompt T , training examples DT2P

and DT2TL, number of few shot examples N
Prompts: Modules LMT2P and LMT2TL
Output: TL Specification !

1 begin
2 ! → {} // Initialize empty set !
3 for m ↑ M do
4 DT2P|train = MIPROv2.optimize (DT2P,m,N)

// Find optimal fewshot dataset
5 DT2TL|train = MIPROv2.optimize (DT2TL,m,N)

// Find optimal fewshot dataset
6 ωωT2P → {(Ti,Pi) | Ti,Pi ↑ DT2P|train}Ni=1

// Update parameters
7 ωωT2TL → {(Ti,Pi,!i) | Ti,Pi,!i ↑ DT2TL|train}Ni=1

// Update parameters
8 P = LMT2P

(
T ,m, ωωT2P

)
// Compute

propositions
9 ! → ! ↓ {LMT2TL

(
T ,P,m, ωωT2TL

)
}

// Compute specification
10 end for
11 return !

10.1. DSPy & MIPROv2
To evaluate L4-5 of Algorithm 2, PULS uses DSPy and
MIPROv2 to optimize the prompts by selecting the appro-
priate subset of DT2P and DT2TL respectively. First, it cre-
ates a bootstrap dataset D→ from the original dataset D.
This dataset comprises effective few-shot examples that are
generated using rejection sampling. Since the bootstrap-
ping process is done for both DT2P and DT2TL, we can say
D→ = D→

T2P ↑D→
T2TL.

Next, PULS proposes k different instructions using an
LLM depending on the properties of the original dataset
D and the original instruction, yielding the instruction sets
xT2P = {xT2Pj}kj=0 and xT2TL = {xT2TLj}kj=0. Thus, given
a particular dataset entry i and instruction j:

Ppred
i,j = LLM(Ti, xT2Pj , ωllm), Ti ↔ D→

T2P (13)

!pred
i,j = LLM(Ti,Pi, xT2TLj , ωllm), Ti,Pi ↔ D→

T2TL
(14)

Accuracy functions are defined as the following, where
ε is an evaluation metric that returns a similarity score be-
tween 0 and 1 of its inputs:

fT2P(D→
T2P, i, j) = ε(Pi,Ppred

i,j), Pi ↔ D→
T2P (15)

fT2TL(D→
T2TL, i, j) = ε(!i,!

pred
i,j), !i ↔ D→

T2TL (16)

Bayesian Optimization is used to create an optimal sub-
set, Dtrain of size N , with the following operation:

DT2P|train =arg max
Ds↑D→

T2P,|Ds|=N
[
∑

i↓Ds

max
0↔j↔k

fT2P(Ds, i, j)

]
(17)

DT2TL|train = arg max
Ds↑D→

T2TL,|Ds|=N
[
∑

i↓Ds

max
0↔j↔k

fT2TL(Ds, i, j)

]
(18)

Dtrain = DT2P|train ↑DT2TL|train. (19)

With this process, Dtrain can be used as an effective few-
shot dataset for PULS. LMT2P uses DT2P|train and LMT2TL
uses DT2TL|train as their datasets. Prompt 1 and Prompt 2

detail the system prompts for the overall consistency mode
in LMT2P and LMT2TL respectively.

PULS Prompt for Text to Propositions (.md)

System Message:

Your input fields are:
1. ‘input prompt’ (str): Input prompt
summarizing what happened in a video.

Your output fields are:
1. ‘reasoning’ (str)
2. ‘output propositions’ (str): A list
of atomic propositions that correlate with
the inputted prompt. For example, for a
prompt such as ‘A person holding a hotdog is
walking down to the street where many cars
next to the huge truck’, the propositions are
‘person holds hotdog’, ‘person walks’, and
‘car next to truck’. This outputted list of
propositions MUST be formatted as: [prop1,
prop2, prop3].

Your objective is:
Convert from a prompt to a list of
propositions using the following schema.

User message:

Input Prompt: A boat sailing leisurely along
the Seine River with the Eiffel Tower in
background, zoom out.

Respond with the corresponding output fields,
starting with the field ‘reasoning’, then
‘output propositions’.

Assistant message:

Reasoning: Not supplied for this particular
example.

Output Propositions: [‘There is a boat’, ‘The
boat is sailing leisurely’, ’The boat is along
the Seine River’, ‘The Eiffel Tower is in the
background’, ‘The view is zooming out’]

· · ·
< redacted more examples >

· · ·

Prompt 1. T2P Prompt for PULS. System prompt to map
prompts to the propositions for the “Overall Consistency”
mode. Other modes follow a similar structure, albeit with mi-
nor changes in instructions and few-shot examples.

11. Vision Language Model Calibration
In this section, we provide the implementation details to de-
tect the existence of propositions obtained by PULS to label
each frame in the synthetic video. First, we describe how
VLMs conduct inference and then describe the methodol-
ogy for obtaining the optimal thresholds for calibrating the
vision language model.

11.1. Inference Via Vision Language Models
We use VLM as a semantic detector as explained in Sec-
tion 4.2. We pass each atomic proposition pi ↔ P such as
“person”, “car”, “person in the car”, etc. along with Sec-
tion 11.1. Once the VLM outputs either ‘Yes’ or ‘No’, we

compute the token probability of the response and use it as
a confidence score for the detection.

PULS Prompt for Text to Temporal Logic (.md)

System Message:

Your input fields are:
1. ‘input prompt‘ (str): Input prompt
summarizing what happened in a video.
2. ‘input propositions‘ (str): A list of
atomic propositions in the video.

Your output fields are:
1. ‘reasoning’ (str)
2. ‘output specification’ (str): The formal
specification of the event sequence. The
response will be a linear temporal logic (LTL)
formula made of the inputted propositions
combined with LTL symbols. Each symbol can
only be one of [‘AND’, ‘OR’, ‘NOT’, ‘UNTIL’,
‘ALWAYS’, ‘EVENTUALLY’].

Your objective is:
Convert from a prompt and a list of
propositions to a TL specification using
the following schema.

User message:

Input Prompt: A baseball glove on the right
of a tennis racket, front view.

Input Propositions: [‘There is a baseball
glove’, ‘There is a tennis racket’, ‘The
baseball glove is on the right of the tennis
racket’, ‘The view is from the front’]

Respond with the corresponding output fields,
starting with the field ‘reasoning’, then
‘output specification’.

Assistant message:

Reasoning: Not supplied for this particular
example.

Output Specification: (There is a baseball
glove AND There is a tennis racket AND The
baseball glove is on the right of the tennis
racket AND The view is from the front)

· · ·
< redacted more examples >

· · ·

Prompt 2. T2TL Prompt for PULS. System prompt to map
prompts and propositions for the “Overall Consistency” mode.
Other modes follow a similar structure, albeit with minor
changes in instructions and few-shot examples.

Prompt for Semantic Detector (VLM)

Is there {atomic proposition (pi)} present in
the sequence of frames?
[PARSING RULE] 1. You must only return a Yes
or No, and not both, to any question asked.
2. You must not include any other symbols,
information, text, or justification in your
answer or repeat Yes or No multiple times.
3. For example, if the question is ’Is there
a cat present in the Image?’, the answer must
only be ’Yes’ or ’No’.

Prompt 3. Semantic Detector VLM. Used to identify the
atomic proposition within the frame by initiating VLM with
a single frame or a series of frames.

11.2. False Positive Threshold Identification
Dataset for Calibration: We utilize the COCO Captions
[7] dataset to calibrate the following open-source vision lan-
guage models – InternVL2 Series (1B, 2B, 8B) [45] and
LLaMA-3.2 Vision Instruct [2] – for NeuS-V . Given that
each image-caption pair in the dataset is positive coupling,
we construct a set of negative image-caption pairs by ran-
domly pairing an image with any other caption correspond-
ing to a different image in the dataset. Once we construct
the calibration dataset, which comprises 40000 image cap-
tion pairs, we utilize the VLM to output a ‘Yes’ or a ‘No’
for each pair.

Thresholding Methodology We can identify the optimal
threshold for the VLM by treating the above problem as ei-
ther a single-class or multi-class classification problem. We
opt to do the latter. The process involves first compiling de-
tections into a list of confidence scores and one-hot encoded
ground truth labels. We then sweep through all available
confidence scores to identify the optimal threshold. Here,
we calculate the proportion of correct predictions by apply-
ing each threshold (see Figure 7). The optimal threshold is
identified by maximizing accuracy, which is the ratio of the
true positive and true negative predictions. Additionally, to
comprehensively evaluate model behavior, we compute Re-
ceiver Operating Characteristics (ROC) as shown in Figure
7, by computing the true positive rate (TPR), and false pos-
itive rate (FPR) across all thresholds. Once we obtain the
optimal threshold, we utilize it to calibrate the predictions
from the VLM. We show the accuracy vs confidence plots
before and after calibration in Figure 7.

12. Video Automaton Generation Function
Given a calibrated score set (see Equation (20)) across all
frames Fn (where n is the frame index of the video) and
propositions in P , we construct the video automaton AV
using the video automaton generation function (see Equa-

Figure 7. Calibration Plots. We plot the accuracy vs threshold for
all VLMs on our calibration dataset constructed from the COCO
Caption dataset (top left). We plot the True Positive Rate (TPR)
vs False Positive Rate (FPR) across all thresholds on the top right.
Finally, the bottom plots show the confidence vs accuracy of the
model before and after calibration, respectively.

tion (7)).

Cω = {Cω
pi,j | pi ↔ P, j ↔ {1, 2, . . . , n}}. (20)

As shown in Algorithm 3, we first initialize the compo-
nents of the automaton, including the state set Q, the label
set ϑ, and the transition probability set ϖ, all with the initial
state q0. Next, we iterate over Cω, incrementally construct-
ing the video automaton by adding states and transitions for
each frame. This process incorporates the proposition set
and associated probabilities of all atomic propositions. We
compute possible labels for each frame as binary combina-
tions of P and calculate their probabilities using the Cω.

13. NeuS-V Prompt Suite

Creating the Dataset: Our dataset is carefully designed
to evaluate temporal fidelity and event sequencing in gen-
erated videos. It spans four themes – “Nature”, “Human
& Animal Activities”, “Object Interactions”, and “Driv-
ing Data”, with each theme containing 40 prompts. These
prompts vary in complexity, categorized into 20 basic, 15
intermediate, and five advanced prompts based on the num-
ber of temporal and logical operators (see Table 5). These
prompts were generated using GPT-4o with the system
prompt in Prompt 4. To ensure quality, each prompt was
manually verified for clarity, completeness, and relevance.

Generating Videos from Prompts: We generated videos
for all 160 prompts using both open-source and closed-
source models. For open-source models, we utilized pre-
trained weights and code by cloning their HuggingFace
Spaces and querying them using huggingface client.
For closed-source models (Gen3 and Pika), we imple-
mented a custom CLI that reverse-engineers their front-end
interfaces to automate video generation requests. In to-
tal, we produced 640 videos (160 prompts ↗ four models).
We also plan to launch a publicly available leaderboard on
HuggingFace after acceptance, which will allow continuous
evaluation of new T2V models as they emerge.

Annotations: Annotations were crowdsourced from 20
participants, including contributors from social media plat-
forms like X (formerly Twitter) and LinkedIn. As shown in
Figure 8, annotators were instructed to evaluate the align-
ment of videos with their corresponding prompts while dis-
entangling visual quality from text-to-video alignment.

Insights into Prompts: We showcase representative ex-
amples from our dataset in Table 6 and Table 7, highlight-
ing the diversity and complexity of prompts. These exam-
ples provide prompts to represent them in different modes.
In the future, we plan to expand the dataset by adding more
prompts across existing themes and introducing new cate-
gories to further enhance its utility and scope.

Theme Complexity Total Prompts
Basic Intermediate Advanced

Nature 20 15 5 40
Human & Animal Activities 20 15 5 40

Object Interactions 20 15 5 40
Driving Data 20 15 5 40

Total 80 60 20 160

Table 5. Statistics of NeuS-V Prompt Suite. We include prompts
from various themes across different complexities to evaluate T2V
models on a total of 160 prompts.

Algorithm 3: Video Automaton Generation
Input: Set of semantic score across all frames given all atomic propositions

{Cω = Cω
pi,j | pi ↔ P, j ↔ {1, 2, . . . , n}}, set of atomic propositions P

Output: Video automaton AV
1 begin
2 Q ↘ {q0} // Initialize the set of states with the initial state

3 ϑ ↘ {(q0, initial)} // Initialize the set of labels with the initial label

4 ϖ ↘ {} // Initialize the set of state transitions

5 Qp ↘ {q0} // Track the set of previously visited states

6 n ↘ |Cω|
|P| // Calculate the total number of frames n

7 for j ↘ 1 to n do
8 Qc ↘ {} // Track the set of current states

9 for ekj ↔ 2|P| do
// ekj : unique combination of 0s and 1s for atomic propositions in P

10 ϑ(qkj) = {v1, v2, . . . , vi | vi ↔ {1, 0}, ≃i ↔ {1, 2, . . . , |P|}}
11 pr(j, k) ↘ 1 // Initialize probability for the label

12 for vi ↔ ϑ(qkj) do
// Calculate probability for ekj

13 if vi = 1 then
14 pr(j, k) ↘ pr(j, k) · Cω

pi,j

15 else
16 pr(j, k) ↘ pr(j, k) · (1⇐ Cω

pi,j)

// Add state and define transitions if the probability is positive

17 if pr(j, k) > 0 then
18 Q ↘ Q ↑ {qkj }
19 Qc ↘ Qc ↑ {qkj }
20 ϑ ↘ ϑ ↑ {(qkj ,ϑ(qkj))}
21 for qj↗1 ↔ Qp do
22 ϖ(qj↗1, qkj) ↘ pr(j, k)

23 ϖ ↘ ϖ ↑ {ϖ(qj↗1, qkj)}
24 end for
25 end for
26 Qp ↘ Qc // Update previous state

27 end for
28 end for

// Add terminal state

29 Q ↘ Q ↑ {q0j+1}
30 ϑ ↘ ϑ ↑ {(q0j+1, terminal)}
31 for qj↗1 ↔ Qp do
32 ϖ(qj↗1, q0j+1) ↘ 1

33 ϖ ↘ ϖ ↑ {ϖ(qj↗1, q0j+1)}
34 end for // Return video automaton

35 AV ↘ (Q, q0, ϖ,ϑ)
36 return AV

Generating Temporally Extended Prompts (.md)

Objective: Generate individual prompts for a
text-to-video generation benchmark. Each prompt
should focus on specific temporal operators and
adhere to the given theme and complexity level.
Your goal is to create clear, vivid prompts
that illustrate events occurring in time, with a
strong emphasis on temporal relationships.

Instructions for Prompt Generation
1. **Theme**: One of the following themes:
Nature, Human and Animal Activities, Object
Interactions, or Driving Data
2. **Complexity Level**:

- **Basic (1 Operator)**: Use only **one
temporal operator** ("Always," "And," or
"Until") in the prompt.
- **Intermediate (2 Operators)**: Use **two
temporal operators** in a sequence. The
prompt should clearly connect the events with
each operator in a natural, coherent way.
- **Advanced (3 Operators)**: Use **three
temporal operators** in a chain, showing a
progression of events. Each part should flow
logically to the next.

3. **Available Temporal Operators**:
- **"Always"**: Describes an event that
continuously occurs in the background or
context.
- **"And"**: Combines two events happening
simultaneously or in coordination.
- **"Until"**: Describes an event that
occurs until another event starts.

Examples
Theme: Nature
- **Basic (1 Operator)**:

- "Always a river flowing gently."
- "Rain pouring until the sun comes out."
- "A bird chirping and a dog barking nearby."

· · ·
< redacted more examples >

· · ·

Ensure that each prompt uses only the
specified number of operators based on
complexity, with clear temporal transitions
between events. Use vivid language to create
a realistic and engaging scenario. Try not to
use language that is too abstract or ambiguous,
focusing on concrete actions and events. Do not
include any acoustic information in the prompts,
as they are meant to describe visual scenes only.

I shall provide you with a theme, complexity
level, and the number of prompts you need to
generate. You must only output the prompts,
each on a new line, without any additional
information.

Are you ready?

Prompt 4. System Prompt for NeuS-V Prompt Suite. Used to
query GPT-4o to generate temporally extended prompts across dif-
ferent themes and complexities.

Figure 8. Tool for Annotating Videos. Subjects are instructed
to disambiguate quality and alignment during annotation, scoring
each from a range of 1 through 5.

Theme Complexity Prompts and Specification Modes

Nature Basic Prompt: Snow falling until it covers the ground
Object Existence: (“snow”) U (“ground”)

Object Action Alignment: (“snow falls” U “ground is covered”)
Spatial Relationship: F (“snow covers ground”)

Overall Consistency: (“snow falling” U “it covers the ground”)

Prompt: Always waves crashing against the rocky shore
Object Existence: G (“waves” & “shore”)

Object Action Alignment: G (“waves crash against rocky shore”)
Spatial Relationship: G (“waves on shore”)
Overall Consistency: G (“waves crashing against the rocky shore”)

Intermediate Prompt: The sun shining until the clouds gather, and then rain begins to fall
Object Existence: (“sun shining” U “clouds gather”) & F (“rain begins to fall”)
Object Action Alignment: (“sun shines” U “clouds gather”) & F (“rain falls”)

Spatial Relationship: G (“sun over horizon” & “dew on grass”)
Overall Consistency: (“sun shining” U “clouds gather”) & F (“rain begins to fall”)

Prompt: A butterfly resting on a flower until a gust of wind comes, and then it flies away
Object Existence: (“butterfly” & “flower”) U (“wind”)

Object Action Alignment: (“butterfly rests on flower” U “gust of wind comes”) & F (“butterfly flies away”)
Spatial Relationship: (“butterfly on flower”) U (“butterfly flies away”)

Overall Consistency: (“butterfly resting on a flower” U “gust of wind comes”) & F (“it flies away”)

Advanced Prompt: Always a river flowing quietly through the valley, until the sky darkens with storm clouds, and rain
begins to pour heavily

Object Existence: G (“river” & “storm clouds”)
Object Action Alignment: ((“river flows quietly” U “sky darkens”)) & F(“rain pours”)

Spatial Relationship: G(“river flowing through valley”) U (“sky darkens with storm clouds”) & F
“rain begins to pour heavily”

Overall Consistency: G ((“river flowing quietly through the valley”) U “sky darkens with storm clouds”) & F
“rain begins to pour heavily”

Human and
Animal

Activities

Basic Prompt: A dog barking until someone throws a ball
Object Existence: (“dog”) U (“ball”)

Object Action Alignment: (“dog barks” U “someone throws ball”)
Spatial Relationship: G (“clock on mantle” & “fireplace beneath mantle”)

Overall Consistency: (“dog barking” U “someone throws a ball”)

Prompt: A bird singing until it flies away to another branch
Object Existence: (“bird”) U (“branch”)

Object Action Alignment: (“bird sings” U “bird flies away to another branch”)
Spatial Relationship: (“bird on branch”) U (“bird on different branch”)

Overall Consistency: (“bird singing” U “it flies away to another branch”)

Intermediate Prompt: A child building a sandcastle until the tide rises, and then they watch it wash away
Object Existence: (“child” & “sandcastle”) U “tide”

Object Action Alignment: ((“child builds sandcastle” U “tide rises”)) & F(“child watches it wash away”)
Spatial Relationship: (“child building sandcastle” U “tide rises”)

Overall Consistency: (“child building a sandcastle” U “tide rises”) & F “child watches sandcastle wash away”

Prompt: Always a cat lounging on the porch, and butterflies fluttering around
Object Existence: G (“cat” & “butterflies”)

Object Action Alignment: G((“cat lounges” & “butterflies flutter”))
Spatial Relationship: G(“cat lounging on porch” & “butterflies fluttering around”)

Overall Consistency: G (“cat lounging on the porch” & “butterflies fluttering around”)

Advanced Prompt: A dog digging in the backyard, until its owner arrives, and then they play fetch together
Object Existence: (“dog” & “backyard”) U (“owner” & “ball”)

Object Action Alignment: (“dog digs in backyard” U “owner arrives”) & F (“dog plays fetch with owner”)
Spatial Relationship: (“dog in backyard”) U (“owner arrives”)

Overall Consistency: (“dog digging in the backyard” U “its owner arrives”) & F (“they play fetch together”)

Table 6. NeuS-V Prompt Suite: Illustrative prompts and their detailed specifications (across all four modes) for varying complexities
within the “Nature” and “Human and Animal Activities” themes.

Theme Complexity Prompts and Specification Modes

Object
Interactions

Basic Prompt: A lamp glowing until it is turned off
Object Existence: (“lamp”) U (¡‘lamp”)

Object Action Alignment: (“lamp glows” U “lamp is turned off”)
Spatial Relationship: (“cars passing by person”)

Overall Consistency: (“lamp glowing” U “it is turned off”)

Prompt: A car engine running and the dashboard lights flashing
Object Existence: (“car engine” & “dashboard lights”)

Object Action Alignment: (“car engine runs”&“dashboard flashes”)
Spatial Relationship: (“car engine running” & “dashboard lights flashing”)

Overall Consistency: (“car engine running” & “dashboard lights flashing”)

Intermediate Prompt: Always a record player spinning a vinyl, and light glowing softly from a nearby lamp
Object Existence: G (“record player” & “lamp”)

Object Action Alignment: G((“record player spins”&“lamp glows”))
Spatial Relationship: G(“vinyl on record player” & “light glowing from nearby lamp”)

Overall Consistency: G (“record player spinning a vinyl” & “light glowing softly from a nearby lamp”)

Prompt: A drone hovering in the air until it reaches its next waypoint, and then it continues to fly
Object Existence: (“drone”) U (“waypoint”)

Object Action Alignment: (“drone hovers in air” U “drone reaches next waypoint”) & F
(“drone continues to fly”)

Spatial Relationship: (“drone in air”) U (“drone reaches waypoint”)
Overall Consistency: (“drone hovering in air” U “drone reaches next waypoint”) & F (“drone continues to fly”)

Advanced Prompt: A lightbulb flickering intermittently, until the switch is turned off, and then the room is cast into darkness
Object Existence: (“lightbulb”) U “switch”

Object Action Alignment: ((“lightbulb flickers” U “switch turned off”)) & F(“room darkens”)
Spatial Relationship: (“lightbulb flickering” U “switch is turned off”)

Overall Consistency: (“lightbulb flickering intermittently” U “switch is turned off”) & F
“room is cast into darkness”

Driving Data Basic Prompt: The vehicle moving forward until it reaches a stop sign
Object Existence: “vehicle” U “stop sign”

Object Action Alignment: (“vehicle moves” U “vehicle reaches stop sign”)
Spatial Relationship: (“vehicle moving forward” U “vehicle at stop sign”)

Overall Consistency: (“vehicle moving forward” U “vehicle reaches a stop sign”)

Prompt: A motorcycle revving and a bus pulling up beside it
Object Existence: (“motorcycle” & “bus”)

Object Action Alignment: (“motorcycle revs”&“bus pulls up”)
Spatial Relationship: (“motorcycle revving” & “bus pulling up beside”)

Overall Consistency: (“motorcycle revving” & “bus pulling up beside”)

Intermediate Prompt: A traffic light turning red until pedestrians finish crossing, and then it shifts to green
Object Existence: (“traffic light”) U “pedestrians”

Object Action Alignment: ((“traffic light is red” U “pedestrians finish crossing”)) &
F(“traffic light turns green”)

Spatial Relationship: (“traffic light turning red” U “pedestrians finish crossing”)
Overall Consistency: (“traffic light turning red” U “pedestrians finish crossing”) & F

“traffic light shifts to green”

Prompt: Always an electric vehicle charging at the station, and its driver reading a book nearby
Object Existence: G (“vehicle” & “driver”)

Object Action Alignment: G((“electric vehicle charges”&“driver reads”))
Spatial Relationship: G(“electric vehicle charging at station” & “driver reading book nearby”)
Overall Consistency: G (“electric vehicle charging at the station” & “driver reading a book nearby”)

Advanced Prompt: A car driving through the city streets, until it encounters a construction zone, and then it reroutes to an
alternate path

Object Existence: (“car” & “streets”) U (“construction zone” & “path”)
Object Action Alignment: (“car drives through city streets” U “car encounters construction zone”) & F

(“car reroutes to alternate path”)
Spatial Relationship: (“car on city streets”) U (“car at construction zone”)

Overall Consistency: (“car driving through city streets” U “it encounters a construction zone”) & F
(“it reroutes to an alternate path”)

Table 7. NeuS-V Prompt Suite (continued): Illustrative prompts and their detailed specifications (across all four modes) for varying
complexities within the “Object Interactions” and “Driving Data” themes.

	Introduction
	Related Work
	Preliminaries
	Methodology
	Prompt Understanding via Temporal Logic Specification
	Semantic Score from Neural Perception Model
	Automaton Representation of Synthetic Video
	Verifying Synthetic Video Formally

	Experimental Setup
	Results
	Formal Evaluation of Text-to-Video Models
	Ablation on Temporal Logic and Verification – How Important is Formal Language?
	Demonstrating Robustness on a Real-World Video-Captioning Dataset
	Ablations on Architectural Choices

	Discussion
	Conclusion
	Temporal Logic Operation Example
	Prompt Understanding via Temporal Logic Specification (PULS)
	DSPy & MIPROv2

	Vision Language Model Calibration
	Inference Via Vision Language Models
	False Positive Threshold Identification

	Video Automaton Generation Function
	NeuS-V Prompt Suite

