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Appendix
A. Limitations
Our method effectively avoids the issue of insufficient data
diversity generated by batch-to-global methods and reduces
the computational cost of the generation process. However,
there is still a performance gap when training the model
on our generated data compared to training on the original
dataset. Also, our short-optimized data exhibits similar ap-
pearance and semantic information to the original images,
which has demonstrated better privacy protection than prior
train-free methods but may still potentially leak the privacy
of the original dataset to some extent.

B. More Training Details
For reproducibility, we provide all our hyper-parameter set-
tings used in our experiments in Table 1, we outline such
details below.
Squeezing and Pre-trained models. Following the previ-
ous works [4, 5], we use the official PyTorch [2] pre-trained
ResNet-18 model for ImageNet-1K, and we use the same
official Torchvision [2] code to obtain our pre-trained mod-
els, ResNet-18 and ConvNet, for the other datasets.
Ranking. For our initialization, we simply use ResNet-18
pre-trained models to rank and select the medium images as
initialization for all our datasets, except for ImageNet-100
where we simply extract the medium images based on the
rankings of the original ImageNet-1K.
Recovery. For our synthetic stage, we provide the details
of general hyper-parameters used for different datasets, in-
cluding ImageNet-1K, ImageNet-100, ImageNette, Tiny-
ImageNet, and CIFAR10, in Table 1b. Synthesizing a sin-
gle image per class, i.e., IPC = 1, is special as we cannot use
rounds, so we apply individual numbers of iterations based
on both the dataset scale and the validation teacher model as
outlined in Table 1c. We also utilize the BatchNorm distri-
bution regularization term as in SRe2L [5] for Eq. 7 in the
main paper to improve the quality of the generated images:
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where l is the index of BN layer, µl(x̃) and σ2
l (x̃) are mean

and variance. BNRM
l and BNRV

l are running mean and
running variance in pre-trained model at l-th layer, which
are globally counted.
Validation. This includes the soft-label generation [3] as
used in SRe2L, post-training and evaluation. We outline
such details in Table 1a. We use timm’s version of Ran-

tiny-imagenet
Figure 1. Synthetic image visualizations on Tiny-ImageNet gen-
erated by our DELT.

Figure 2. Synthetic image visualizations on ImageNette generated
by our DELT.



(a) Validation settings
config value

optimizer AdamW

base learning rate 0.001 (all)
0.0025 (MobileNet-v2)

weight decay 0.01

batch size
100 (IPC 50)
50 (IPC 10)
10 (IPC 1)

learning rate schedule cosine decay
training epoch 300

augmentation
RandAugment
RandomResizedCrop
RandomHorizontalFlip

(b) Recovery settings

config value

αBN 0.01
optimizer Adam
base learning rate 0.25
momentum β1, β2 = 0.5, 0.9
batch size 100
learning rate schedule cosine decay
recovery iteration 4,000
round iteration 500 [IPC 10, 50, 100]
initialization top medium
augmentation RandomResizedCrop

(c) Dataset-specific settings in recovery
config CIFAR10 Tiny-ImageNet ImageNette ImageNet-100 ImageNet-1K

RandAugment (m) 5 4 6 6 6
RandAugment (n) 4 3 2 2 2
RandAugment (mstd) 1.0 1.0 1.0 1.0 1.0

IPC1 Recovery Iterations

2K (R18) 500 (R18) 1K (R18) - 3K (Conv4)
3K (R101) 500 (R101) 1K (R101) - -

2K (MobileNet) 500 (MobileNet) 2K (MobileNet) - -
- 1K (Conv4) 4K (Conv5) - -

Table 1. Hyper-parameter settings.

Initialization SRe2L + w/ Init w/o EarlyLate CDA + Init w/o EarlyLate CDA + w/ Init + w/ EarlyLate (Ours)
2×2 55.3 56.9 58.2(+1.3)

3×3 55.8 56.6 58.1(+1.5)

4×4 55.2 56.7 57.4(+0.7)

5×5 54.6 56.5 57.3(+0.8)

Table 2. Performance comparison w/ and w/o EarlyLate on ImageNet-1K under IPC 50.

Order DELT
Random 67.9

Ascending 67.2
Descending 67.7
Our DELT 68.2

Table 3. Impact of using different ordering on ImageNet-100 when
having the same initialized images of the median probability.

Selection Strategy DELT
Random 67.7

Ascending 66.9
Descending 67.3
Our DELT 68.2

Table 4. Comparison of the performance of different initialization
strategies. The initialized images are different.

dAugment [1] with different settings depending on the syn-
thesized dataset being validated, as shown in Table 1c.

C. More Visualization

We provide more visualizations on synthetic Tiny-
ImageNet, ImageNette and CIFAR-10 datasets in Fig. 1, 2,
3. In each figure, each column represents a different class,
with images progressing from long optimization at the top
to short optimization at the bottom.

D. More Ablation

Performance comparison w/ and w/o EarlyLate. We
compare using the recent CDA and SRe2L as the base
frameworks. The performance comparison for IPC 50 on
ImageNet-1K is shown in Table 2. It can be observed that
the proposed EarlyLate strategy enhances the performance
by around 1% with the initialization.
Comparison of random, ascending and descending or-
ders by patch probability. In our DELT, we select the
N patches with scores around the median from the teacher,
where the score represents the probability of the true class.
To order them, we start with the median, and we go back



Figure 3. Synthetic images on CIFAR-10 generated by our DELT.

and forth expanding the window around the median until
we cover the number of IPCs, refer to Fig. 5 of the main pa-
per for details. The rationale is that these patches present
a medium difficulty level for the teacher, allowing more
potential for information enhancement through distillation
gradients while having a good starting point of information.
We empirically validate it by comparing different strategies
in Table 4b of the main paper.

As shown in Table 3, we present the impact of using dif-
ferent ordering on ImageNet-100 when having the same ini-
tialized images, those around the median. We also include
a comparison of different initialization strategies based on
the order in Table 4. Unlike Table 3, the initialized images
here are different across different strategies.
Different initial crop ranges in random crop augmenta-
tion for our DELT method. Table 5 compares different ini-
tial crop ranges in random crop augmentation for our DELT
method. As shown in the results, the 0.08-1.0 range yields
the best performance, which is the ablation and support for
the default setting in our framework.

Random Crop Range Top 1-acc

0.08-1.0 67.8
0.2-1.0 67.3
0.5-1.0 66.3
0.8-1.0 66.3

Table 5. Different initial crop ranges in random crop augmentation
for our DELT method.
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Figure 4. Visualization of computation time consumption on our
DELT and other methods including CDA, SRe2L, and G-VBSM.

E. Computational Efficiency

Fig. 4 illustrates the computation time required for our
DELT method compared to other methods, including CDA,
SRe2L, and G-VBSM, at various numbers of IPCs. The
top subfigure shows a comparison of DELT (with a RI
of 500), CDA/SRe2L, and G-VBSM, where G-VBSM
demonstrates the highest computation time, scaling signif-
icantly as the number of IPCs increases. In contrast, both
DELT and CDA/SRe2L maintain relatively low and consis-
tent computation times, with DELT slightly outperforming
CDA/SRe2L. The bottom subfigure further compares DELT
with RIs of 500 and 1,000 against CDA/SRe2L, highlight-
ing that both configurations of DELT offer lower or compa-
rable computation times to CDA/SRe2L across IPC values,
with minimal increase as the IPC count rises. These results
emphasize DELT’s efficiency in computation time, particu-
larly in comparison to G-VBSM, making it a computation-
ally efficient choice for scenarios with larger datasets.
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