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A. Additional Experimental Settings

Datasets. Following common practice, we perform eval-
uations on four widely used benchmarks for video-text
retrieval: (1) MSRVTT [53] includes 10,000 YouTube
videos, each with 20 text descriptions. Following previ-
ous methods [13, 39], we train on the ‘train+val’ set with
9,000 video-text pairs and evaluate on the ‘1K-A’ test set
with 1,000 video-text pairs. (2) LSMDC [43] consists of
118,081 movie clips, each paired with a single description.
We use 101,079 for training, 7,408 for validation, and 1,000
for testing, reporting results based on the test set. (3) Activ-
ityNet [29] consists of 20,000 YouTube videos. Our evalu-
ation utilizes the ‘val1’ split, which includes 10,009 videos
for training and 4,917 for testing. Following previous meth-
ods [13, 59], we concatenate all sentence descriptions of a
video into a single paragraph. (4) DiDeMo [1] comprises
10,000 videos with a total of 40,000 text descriptions. The
training set contains 8,395 videos, while the test set con-
tains 1,004 videos. Following previous methods [3, 31], we
combine all descriptions of a video into a single query.
Evaluation Metrics. We evaluate the performance using
common retrieval metrics such as Recall at K (R@K and
K = 1, 5, 10), the sum of these recalls (R@sum), and
Mean Rank (MnR). R@K measures the proportion of rel-
evant items retrieved in the top K results for a given query.
MnR calculates the mean rank of correct items. Note that
for R@K, a higher score means better performance. Con-
versely, for MnR, a lower score indicates better results.
Implementation Details. Following previous parameter-
efficient research [5, 22, 25, 58], we utilize the pre-trained
CLIP model as our backbone. we implement the AdamW
optimizer [36] with a batch size of 128. For all datasets,
the initial learning rate is set to 6e-4, employing a cosine
learning rate schedule [15] over 5 epochs. For MSRVTT
and LSMDC, the max frame and caption length are set to
12 and 32. For ActivityNet and DiDeMo, the max frame
and caption length are set to 32 and 64. In all experiments,
the LoRA dimension and the adapter dimension r are set to
8. In Eq. 14, α and β are set to 0.3 and 1.0, respectively.
For the number of IVFusion layers, we set HV = 4 for the
vision encoder and HL = 2 for the text encoder.

B. Additional Experimental Results

Ablation study on α and β in Eq. (14). Figures 6 and
7 present ablation studies on hyperparameters α and β, re-
spectively. These parameters control the trade-off among

Figure 6. Ablation study on α in Eq. (14) for text-to-video results
on MSRVTT using CLIP (ViT-B/32). α represents the weight of
the image-level alignment loss LA(Sim

img). All other hyperpa-
rameters are kept constant.

Figure 7. Ablation study on β in Eq. (14) for text-to-video results
on MSRVTT using CLIP (ViT-B/32). β represents the weight of
the distillation loss LKL. All other hyperparameters are kept con-
stant.

the video-level alignment loss LA(Sim
vid), the image-level

alignment loss LA(Sim
img), and the distillation loss LKL.

The parameter α represents the weight of LA(Sim
img). In-

creasing α improves both R@1 and R@sum significantly.
Our DiscoVLA achieves optimal performance at α = 0.3,
beyond which it demonstrates parameter insensitivity. The
parameter β represents the weight of LKL. While LKL

does not affect R@1, setting β = 1.0 yields a marked im-
provement in R@sum. Consequently, we set α = 0.3 and
β = 1.0 in our final implementation.
Ablation study on the number of IVFusion layers HV

and HL. The number of IVFusion layers in the vision
and text encoders is denoted by HV and HL, respectively.
IVFusion is applied to the upper layers of CLIP, as these
layers extract high-level semantic information essential for
cross-frame learning. This learning process requires an ad-



Figure 8. Ablation study on HV for text-to-video results on
MSRVTT using CLIP (ViT-B/32). HV represents the number of
IVFusion layers in the vision encoder. All other hyperparameters
are kept constant.

Figure 9. Ablation study on HL for text-to-video results on
MSRVTT using CLIP (ViT-B/32). HL represents the number of
IVFusion layers in the text encoder. All other hyperparameters are
kept constant.

Post-processing Text-to-Video
R@1 R@5 R@10 R@sum

MSRVTT
DiscoVLA 47.0 73.0 82.8 202.8

+QB-Norm [4] 47.5 73.6 82.9 204.0
+DSL [8] 51.3 77.1 85.5 213.9

ActivityNet
DiscoVLA 41.2 72.4 83.6 197.2

+QB-Norm [4] 45.1 74.9 85.2 205.2
+DSL [8] 49.9 78.8 88.1 216.8

Table 9. Effect of post-processing on MSRVTT and ActivityNet
using CLIP (ViT-B/32).

equate number of IVFusion layers. From Figures 8 and
9, we observe that the best performance is achieved when
HV = 4 and HL = 2. This difference in optimal val-
ues may be attributed to the inherent distinctions between
the vision and text modalities. This configuration HV = 4
and HL = 2 demonstrate superior and robust performance
across all benchmarks (see Tables 1-4).
Effect of post-processing. As shown in Table 9, we eval-
uate post-processing methods Q-Norm [4] and DSL [8] on
top of our proposed DiscoVLA. While Q-Norm leads to a
notable 8.0% R@sum increase on ActivityNet, it has min-
imal effect on MSTVTT. In contrast, DSL provides con-

sistent performance gains across both datasets, improving
performance by 11.1% R@sum on MSRVTT and 19.6% on
ActivityNet.
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