DoF-Gaussian: Controllable Depth-of-Field for 3D Gaussian Splatting

Supplementary Material

To see the dynamic effect of our method and visual com-
parisons, please refer to our supplementary video. This doc-
ument includes the following contents:

* Details of our synthetic dataset.

* Correctness of the proposed dataset.
* Color space

* Details on all-in-focus experiments.
* Details of ablation studies.

* Processing time.

* Limitations.

A. Details of our synthetic dataset

To quantitatively evaluate the refocusing ability and assess
whether models learn accurate lens parameters, we intro-
duce a synthetic dataset based on Real Forward Facing
dataset [5] and Tanks and Temples dataset [2]. Specifically,
we apply a state-of-the-art depth estimation method [1] to
generate disparity maps from input images. Subsequently,
we employ a single-image DoF rendering method [7], feed-
ing both the input images and disparity maps into the net-
work to produce images with bokeh blur, as shown in Fig. 1.
We choose [7] to synthesize shallow DoF images primarily
because it is predominantly based on traditional physical
renderer despite the incorporation of neural networks. The
rendered circle of confusion (CoC) in this approach will not
be significantly differ from the CoC produced by our lens-
based physical imaging model. In addition, we excluded
Drjohnson and Playroom, two indoor 360° scenes, due to
significant monocular depth estimation errors of multi-view
input images in indoor environments. At the same time,
the inability to generate poses_bounds.npy files for the Train
and Truck scenes prevents the evaluation of DoF-NeRF on
these two scenes. We maintain these two scenes for com-
parisons with future 3D-GS methods. To assess whether the
model learns the exact aperture size A and focus distance F
for each input image, we set these parameters artificially in
advance. For the focus distance we set three cases, F = 0.2,
F = 0.5 and F = 0.8, corresponding to focus on the back-
ground, mid-ground, and foreground, respectively. Recog-
nizing that the aperture size is closely related to the image
resolution, we here normalize it to 0 — 1 to facilitate the
calculation of the error. We consider two cases for aperture
size: A = 0.5 and A = 1. When we have optimized the 3D-
GS scene, we get the learned focus distance and aperture
size for each training image. Now, we can we can calculate
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Figure 1. We show the disparity map generated by [1] and
the synthetic shallow DoF image obtained from [7].

Table 1. Detailed comparison of our method and DoF-
NeRF [8] on our synthetic dataset.

Method DoF-NeRF [8] Ours
PSNRT SSIM?T LPIPS| PSNR{T SSIM{ LPIPS|
Fern 24.80 0.736 0.200 28.41 0.867 0.098

Flower 27.11 0.82 0.213 29.43 0.889 0.070
Fortress  29.78 0.846 0.186 3222 0.926 0.059
Horns 24.23 0.812 0.235 27.64 0.863 0.122
Orchids  19.99 0.608 0.213 21.54 0.659 0.165
Room 26.55 0.842 0.198 32.16 0.933 0.071

Trex 26.65 0.853 0.207 29.53 0.910 0.082
Train — — — 22.71 0.676 0.216
Truck — — — 21.09 0.675 0.312

the lens parameter error as:
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where A and A indicate the preset aperture size and learned
aperture size, respectively, and N means the number of
training images. The smaller this error § 4 is, the more ac-
curate our learned aperture size is. Similarly we use the
following formula to calculate the focus distance error:
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where F and F are the preset focus distance and learned fo-
cus distance. We use these two metrics to assess whether the
model has learned the correct lens parameters. As demon-
strated in Tables | and 2, our method outperforms DoF-
NeRF [8] in both refocusing ability and the accurate estima-
tion of lens parameters. Furthermore, as illustrated in Fig. 2,
our method generates novel views that are more faithful to
the ground-truth images.

Compared to the previous datasets proposed by Ma et
al. [4] and Wu et al. [8], which evaluate defocus deblurring
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Figure 2. Visual comparison on our synthetic dataset. Our method performs significantly better than DoF-NeRF.

ability, our dataset is specifically designed to assess refo-
cusing capabilities. Both the training and test sets in our
synthetic dataset consist of shallow DoF images. We hope
that this dataset will facilitate future work in this field.

Table 2. Detailed comparison of our method and DoF-
NeRF [8] on our synthetic dataset.

DoF-NeRF [8] Ours
dad 0rl dal OFl

Fern 0.204 0263 0.089 0.102
Flower 0.127 0.280 0.091 0.074
Fortress 0.156 0.299 0.187 0.021
Horns 0.234 0205 0.197 0.075
Orchids 0.189 0.219 0.097 0.087
Room 0.276 0278 0.066 0.116
Trex 0.189 0.251 0.154 0.079
Train — — 0.225 0.113
Truck — — 0.258 0.148

Method

B. Correctness of the proposed dataset

We validate the accuracy of the synthesis strategy using the
BLB dataset, which comprises 500 test samples, each con-
taining paired all-in-focus and defocus images. All-in-focus
images are processed through our synthesis pipeline, and
the resulting synthesized defocus images are compared with
the ground truth to calculate PSNR and SSIM metrics. The
High PSNR and SSIM values indicate that the synthesized
bokeh is close to the real, thereby confirming the effective-
ness of our synthesis strategy.

C. Color space.

We apply a gamma transform on the input image to con-
vert it from sRGB color space to linear color space. Subse-

Table 3. The High PSNR and SSIM values indicate that our
synthesized bokeh is close to the real.

PSNRT  SSIM?
Ours 4330  0.9932

quently, we simulate the circle-of-confusion within the lin-
ear color space. Finally, gamma correction is performed to
convert the image from linear space back to sSRGB space.
The gamma value is 2.2. This process will be further em-
phasized in our revised version.

D. Details on all-in-focus experiments

As shown in Table 4, we present the per-scene break-
down results of Real Forward-facing [5] and T&T-DB [2]
datasets. These results align with the averaged results pre-
sented in the main text. Our method is built upon Mip-
Splatting [9], a robust 3D-GS approach for all-in-focus in-
puts. Evidently, our method demonstrates superior perfor-
mance compared to Mip-Splatting in most scenes. This in-
dicates that our method can not only handle shallow DoF
inputs, but also performs excellent under general input con-
ditions, specially on Real Forward-facing dataset.

E. Details of ablation studies

In this section, we present detailed results of the ablation
experiments in our main paper. In Table 5, we show the per-
scene breakdown results of the ablation studies—baseline,
w/o lens-based imaging model, w/o per-scene depth priors,
w/o defocus-to-focus adaptation, sparse depth supervision,
and no fine-tuned depth supervision. This indicates that
each component of our system plays an important role in
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Figure 3. Visual comparison of different depth supervision strategies.

Table 4. Detailed comparison of other methods and ours on
the all-in-focus dataset.

Method Mip-Splatting [9] Ours
PSNRT SSIMt LPIPS| PSNRT SSIMt LPIPS|

Fern 27.87 0910 0.062 2823 0917 0.062
Flower 25.55 0.868 0.101 27.81 0.910 0.059
Fortress 27.85 0.913 0.072 3257 0951 0.032
Horns 2947 0952 0.049 30.29  0.954 0.052
Leaves 2242 0.848 0.091 2236  0.850 0.089
Orchids 21.58  0.800 0.105 2210 0.821 0.090
Room 3392 0.963 0.057 34.63 0973 0.052
Trex 28.67  0.951 0.056 30.29  0.961 0.042
Train 21.89  0.821 0.190 21.15 0.791 0.251
Truck 2543  0.888 0.129 24.61 0.872 0.180

Playroom 30.50 0.916 0.223 30.93 0.924 0.242
Drjohnson  29.44 0.890 0.249 29.37 0.895 0.258

improving the image deblurring quality. In addition, we
demonstrate the effectiveness of our approach by showing
a visual comparison of the depth maps rendered by 3D-GS
under different depth strategies, as shown in Fig. 3.

F. Processing time.

As shown in Table 6, we recorded the processing time for
both our method and other approaches on a single NVIDIA
RTX A6000 GPU. For both Deblur-NeRF [4] and DoF-
NeRF [8], we follow the specified training iterations out-
lined in the original papers, and calculate the training time.
Due to the underlying NeRF-based framework, their aver-
age training time on the defocus deblurring dataset [4] is
approximately 20 hours and 11 hours, respectively. Fur-
thermore, their inference time is observed to be notably
slow, achieving frame rates below 1 FPS. For the 3D-
GS methods—BAGS [6], Deblurring 3DGS [3], and our
method, we uniformly train for 30k iterations and record
the training time and FPS. Although our method incorpo-

rates a lens imaging model, the training time is only slightly
affected and it remains faster than BAGS. Benefit from the
3DGS framework, all GS-based methods can achieve fast
rendering, obtaining FPS of approximately 360. In addition
to training 3D Gaussian Splatting model, it takes about 3
minutes to fine-tune the depth network for per-scene depth
priors.

G. Discussion on depth supervision.

We employ per-scene adjustments of depth priors to guide
the reconstruction and ensure the accurate scene geome-
try and rendered depth maps. The effectiveness of this ap-
proach is demonstrated by ablation experiments. However,
depth maps predicted by the fine-tuned depth network are
not entirely accurate, and using these as pseudo-gt to super-
vise the depth maps rendered by 3D-GS introduces a degree
of noise. This residual noise may impact the precision of
the final depth maps, particularly in scenes with complex
geometry. We therefore use a strategy of gradual decay of
the depth loss weight wg. In particular, we gradually decay
this weight to 1/10 of the initial value.

H. Limitations

Our method may encounter limitations when the blur is
view-consistent, such as in cases where the camera main-
tains a fixed focal point, i.e., focusing on a single tar-
get). Specifically, when the multi-view inputs all focus on
the foreground, our method may struggle to recover clear
background information. Consequently, a sharp scene can
only be reconstructed if the input images contain both fo-
cused foreground and focused background elements. Ad-
dressing defocus deblurring under view-consistent con-
ditions may be feasible through the integration of im-
age priors, which we consider as a direction for future
work.



Table 5. Ablation studies of per-scene breakdown results on the defocus deblurring dataset [4].

Method baseline w/o lens w/o depth w/o adaptation sparse depth w/o fine-tuned depth
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
cake 24.15 0.710 0216 2569 0.782 0.131 26,51 0.800 0.116 26.09 0794 0.107 2643 0.795 0.121 2641 0.792 0.133
caps 21.24 0.559 0332 2357 0713 0.148 2441 0.741 0.145 2412 0737 0.142 2452 0.742 0.164 2452 0.745 0.157
cisco 20.77 0.732  0.114 20.85 0.743 0.069 2095 0.742 0071 20.88 0.739 0.067 20.72 0.734 0.079 20.76 0.736  0.082
coral 19.66 0.568 0288 19.51 0599 0.147 19.86 0.608 0.122 19.71 0.602 0.133 19.87 0.605 0.132 19.89 0.603 0.132
cupcake 21.72  0.686 0.198 22.09 0.742 0.089 22.82 0.757 0.079 2263 0.752 0.080 22.74 0.752 0.0087 22.81 0.752 0.086
cups 2429 0.749 0223 2589 0814 0.100 2591 0.818 0.114 26.06 0820 0.086 2534 0.800 0.115 2563 0.804 0.117
daisy 1800 0493 0299 2335 0734 0.062 2333 0.721 0.08 2354 0724 0.069 2288 0.706 0.114 2280 0.700 0.119
sausage 17.45 0461 0284 1799 0515 0.169 1847 0.536 0.151 1829 0529 0.156 18.18 0.531 0.172 1855 0.550 0.153
seal 20.71 0.561 0288 2434 0.744 0.114 2554 0.790 0.105 2534 0.781 0.088 26.17 0.805 0.095 26.10 0.804 0.097
tools 2509 0.845 0152 27.17 0898 0.056 28.09 0911 0051 2753 0902 0.052 2757 0.900 0.061 27.82 0.902 0.059

Table 6. comparisons on processing time.

Method Deblur-NeRF [4] DoF-NeRF [8] BAGS [6] Deblurring 3DGS [3] Ours

Time 20 hours 11 hours 25 mins 10 mins 18 mins
FPS <1 <1 332 381 364
References
[1] Aleksei Bochkovskii, Amagl Delaunoy, Hugo Germain, Mar-

[2

—

(3]

(4]

(51

(6]

[7

—

(8]

(9]

cel Santos, Yichao Zhou, Stephan R Richter, and Vladlen
Koltun. Depth pro: Sharp monocular metric depth in less than
a second. arXiv preprint arXiv:2410.02073, 2024. 1
Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and
George Drettakis. 3D Gaussian Splatting for Real-Time Radi-
ance Field Rendering. ACM TOG, 42(4), 2023. 1,2
Byeonghyeon Lee, Howoong Lee, Xiangyu Sun, Usman Ali,
and Eunbyung Park. Deblurring 3D Gaussian Splatting. arXiv
preprint arXiv:2401.00834,2024. 3, 4

Li Ma, Xiaoyu Li, Jing Liao, Qi Zhang, Xuan Wang, Jue
Wang, and Pedro V Sander. Deblur-NeRF: Neural radiance
fields from blurry images. In CVPR, 2022. 1, 3,4

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view synthe-
sis. Communications of the ACM, 65(1),2021. 1,2

Cheng Peng, Yutao Tang, Yifan Zhou, Nengyu Wang, Xijun
Liu, Deming Li, and Rama Chellappa. BAGS: Blur Agnos-
tic Gaussian Splatting through Multi-Scale Kernel Modeling.
arXiv preprint arXiv:2403.04926, 2024. 3, 4

Juewen Peng, Zhiguo Cao, Xianrui Luo, Hao Lu, Ke Xian,
and Jianming Zhang. Bokehme: When neural rendering meets
classical rendering. In CVPR, 2022. 1

Zijin Wu, Xingyi Li, Juewen Peng, Hao Lu, Zhiguo Cao, and
Weicai Zhong. DoF-NeRF: Depth-of-field meets neural radi-
ance fields. In ACM MM, 2022. 1,2, 3, 4

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3D gaussian splat-
ting. In CVPR, 2024. 2, 3



