
Supplementary Document
EnliveningGS: Active Locomotion of 3DGS

In this document, we derive the relevant formulas men-
tioned in the main paper and provide additional details on
the implementation and experimental results.

We also present the results of locomotion in the supple-
mentary video.

1. Implementation Details

1.1. Splitting Gaussians at Center

Problem Definition Given a Gaussian kernel
(α0, µ0,Σ0), define the problem of splitting it at the
center such that it is divided into two new Gaussian kernels
(αl, µl,Σl) and (αr, µr,Σr). The goal is to ensure that
each of the resulting parts remains as consistent as possible
with its own part at the original Gaussian kernel before
splitting.

Assumptions Since a truncated Gaussian kernel cannot
be fully represented by a new complete Gaussian kernel,
and there are multiple ways to truncate it, we make the fol-
lowing assumptions to simplify the problem for accurate de-
scription and approximation:

• The split occurs at the center of the Gaussian, with the
truncation plane passing through the mean of the Gaus-
sian kernel and its normal vector aligned with the direc-
tion of the eigenvector with largest eigenvalue of the co-
variance matrix.

• The spherical harmonic (SH) coefficients of the two parts
after the split remain consistent with those of the original
Gaussian kernel.

• The splitting kernels are detected under deformation but
the splitting process occurs in the rest shape of Go. Af-
ter a Gaussian is split, the new Gaussian kernels need
to establish their own bidirectional local embeddings and
barycentric coordinates to support deformation.

• For approximation, we consider the statistical informa-
tion of the Gaussian distribution i.e. zero, first, and
second-order moments of the truncated Gaussian and new
kernels:
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where Vk represents the truncated half of the Gaussian

kernel.

Zero-order moment Zero-order moment of a Gaussian
kernel describes the total mass or the integral of the proba-
bility density function over the entire space.

Since the 3D Gaussian kernel exhibits spherical symme-
try, any plane that passes through the center of the Gaussian
kernel will divide the kernel into two regions of equal vol-
ume and mass. We have:∫
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First-order moment The first-order order moment is the
mean vector of the distribution, which is the center of
the expected value of the distribution in three-dimensional
space.

The covariance matrix Σ0 can be decomposed using
eigenvalue decomposition:

Σ0 = VΛVT (4)

where Λ is a diagonal matrix containing the eigenvalues
λi, and V is the matrix of eigenvectors, with each column
vi being an eigenvector.

The direction corresponding to the largest eigenvalue
λmax is given by the eigenvector vmax.
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After splitting, the left half of the Gaussian distribution
can be considered a truncated Gaussian distribution. The
mean of a truncated Gaussian distribution changes. The new
mean for the left half can be calculated using the following
formula:

µl = µ0 −Σ0vmax ·
PDFs(β)

1− Φ(β)
. (5)

where:
• PDFs(β) is the PDF of the standard normal distribution.
• Φs(β) is the cumulative distribution function (CDF) of

the standard normal distribution.
• β = 0, because we are splitting at the mean.

Given β = 0, we have ϕ(0) = 1√
2π

and Φ(0) = 0.5.
Thus:

µl = µ0 −Σ0vmax ·
1√
2π

1− 0.5

= µ0 −Σ0vmax ·
2√
2π

(6)

Since Σ0vmax = λmaxvmax, we get:

µl = µ0 − λmaxvmax ·
2√
2π

(7)

In 3DGS, the covariance matrix is decomposed as:

Σ0 = RSSTRT , (8)

where SST forms the diagonal matrix Λ, and each column
vector of R = V (orders may differ) represents a princi-
pal component’s direction vector. Since the end points on
the major axis vk in the left-direction local embedding is
defined as vk = µ0 − γskrk, we have

λmaxvmax =
vk − µ0

γ
. (9)

To simplify, we can denote 2γ√
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as a constant κ, so:
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By analogy, it can be deduced that for the right part:
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Second-order moment The second-order moment indi-
cates the spread and correlation of the distribution through
the covariance matrix. It is given by:

E[(X − µ)(X − µ)T ] = Σ (12)

Here, X is a random vector representing the 3D Gaus-
sian distribution. This equation can be expressed in another
form as follows:
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Combining equations (3), (10), (11), (15) and (16),
we can derive:
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Conclusion For a Gaussian kernel (α0, µ0,Σ0), splitting
it at the center into two new Gaussian kernels (αl, µl,Σl)
and (αr, µr,Σr) can be expressed as follows:
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Here κ = 2γ√
2π

is a constant.

1.2. Muscle Force
In this section, we discuss how to derive the muscle force
acting on the object from muscle activation.

We model muscle fibers as polygonal curves with M
segments, embedded in a tetrahedral mesh containing N
points. Each muscle segment is represented as an individual
spring that can either contract or extend along its current di-
rection without bending. The segment applies an activation
force a ∈ R along its direction, facilitating either contrac-
tion or extension. An activation affects multiple nearby el-
ements. For the i-th element and j-th muscle segment, the



Cap. |G| |Go| |Gc| Ele. N M Solve (ms) Deform (ms)

Jumping chess 112 1424043 3350 1729 2376 693 208 921.7 8.12
Peashooter vs. Zombie 192 547833 8912 1358 4280 1375 62 745.6 10.81
Walking stool 114 361487 16003 492 2582 888 224 492.3 13.28

Table 1. Summary of key metrics for our locomotion experiments. The columns represent the number of training views (Cap.), the
total number of Gaussians in the scene (|G|), the number of Gaussians associated with objects (|Go|), the number of Gaussians involved
in contact (|Gc|), the number of elements in the tetrahedral mesh (Ele.), the number of nodes in the tetrahedral mesh (N), the number of
muscle segments (M), the average time to solve muscle activation per frame (Solve (ms)), and the average time for deformation per frame
using bidirectional local embeddings (Deform (ms)).

influencing weight wij is based on their geodesic distance
gij on the mesh as a Gaussian kernel:

wij = exp

(
−
g2ij
c2

)
, (19)

where c is the variance of the Gaussian function. wij only
depends on the rest shape of the body and muscle, and it
can be pre-computed. The accumulated muscle stress in the
deformed coordinates of the element is:

σi =
∑
j

wijRjEjR
⊤
j , (20)

where

σj = U

fj 0 0
0 0 0
0 0 0

U⊤ = dj ⊗ djaj . (21)

In this context, Rj transforms the stress tensor σj from the
reference coordinates to the deformed coordinates, while U
rotates the vector [1, 0, 0]⊤ in the reference coordinates to
align with dj , which represents the direction of the mus-
cle segments in the reference coordinates. We project σi

onto the area-weighted face normal of the element in the
deformed coordinates. This surface force is then evenly dis-
tributed to the vertices to determine fm at each node. We
employ a pose-dependent activation matrix A ∈ R3N×M

to encode the muscle force computation, such that:

fm = A(p)a , (22)

where a ∈ RM is the vector of activations of all the muscle
segments.

1.3. Inpainting
Our inpainting pipeline builds upon the InFusion frame-
work while incorporating planar contact environment as a
known prior. To ensure comprehensive coverage of our
methodology, we provide a brief description of the inpaint-
ing pipeline in this section.

Given environmental incomplete Gaussians Gscene with
holes in the occluded area and contact plane P (N, d), the

inpainting algorithm will produce the completed environ-
ment G⋆scene.

First, based on a single reference view image Ir and cam-
era pose Πr, the user draws a mask mr for the missing re-
gion. A 2D inpainting tool is applied to inpaint the color
image:

I⋆r ← FInpaint2D(Ir,mr).

Using the plane parameters P (N, d), the inpainted im-
age patch I⋆patch = I⋆r ⊙ mr, and camera parameters Πr,
we unproject I⋆patch from image space to 3D coordinates to
form a colored point cloud P⋆. The merged environment
G′scene ← Gscene ∪P⋆ is fine-tuned for approximately 100 it-
erations to produce the final Gaussian model G⋆scene, guided
by a view-specific loss:

Lfine-tune = (1− λ)∥I ′ − I⋆r ∥1 + λ · D-SSIM(I ′, I⋆r ),

where I ′ denotes the image rendered from the selected
viewpoint and λ = 0.2 is held constant for all experiments.

2. Detailed Results
In the main paper, we demonstrate the actions of jumping,
twisting, and walking through examples from three differ-
ent scenarios. All examples were initially captured in real
world using a digital camera with a 28mm focal length, re-
constructed into sparse point clouds using COLMAP to es-
timate camera poses, and subsequently reconstructed using
3D Gaussian Splatting. In Table 1, we report the key met-
rics and time performance.
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