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Supplementary Material

In the supplementary material, implementation details
are supplemented in Sec. 1 including the calculation of nor-
mals and SDF. In Sec. 2, we report more detailed exper-
imental data to further analyze the CarGS. Sec. 3 shows
more visualizations of qualitative results.

1. Implementation Details
1.1. Normal Calculation
Normal from the splat. Following the method described
in [1], we align the direction of the minimum scale factor
to the Gaussian normal ni . The final normal map, corre-
sponding to the current viewpoint, is then computed using
α-blending:

N(p) =
∑
i∈N

RT
c niαi

i−1∏
j=1

(1− αj), (1)

Rc is defined as the rotation matrix responsible for convert-
ing coordinates from the camera frame to the world frame.
Normal from the depth. At a given pixel point p, we sam-
ple four neighboring points—up, down, left, and right—and
project their corresponding depth values into 3D points, rep-
resented as {Pj | j = 1, . . . , 4}, within the camera coordi-
nate system. The normal of the local plane at p is computed
as follows:

Nd(p) =
(P1 − P0)× (P3 − P2)

|(P1 − P0)× (P3 − P2)|
, (2)

1.2. Depth Calculation
The distance between the plane and the camera center can
be calculated as:

di =
(
RT

c (µi − Tc)
)
RT

c n
T
i , (3)

where Tc is the camera center in the world coordinates,
and µi represents the center of the Gaussian Gi. Using α-
blending, the final distance map corresponding to the cur-
rent viewpoint is then generated:

D =
∑
i∈N

diαi

i−1∏
j=1

(1− αj), (4)

After obtaining the distance and normal of the plane through
rendering, the corresponding depth map can be determined
by intersecting rays with the plane:

D(p) =
D

N(p)K−1p̃
. (5)

Precision↑ Recall↑ F1↑

Barn 0.58/0.41 0.61/0.58 0.60/0.48

Caterpillar 0.33/0.30 0.61/0.59 0.43/0.40

Courthouse 0.13/0.10 0.26/0.23 0.17/0.14

Ignatius 0.79/0.77 0.77/0.74 0.78/0.75

Meetingroom 0.37/0.23 0.34/0.31 0.35/0.26

Truck 0.62/0.37 0.70/0.54 0.65/0.44

Mean 0.47/0.36 0.55/0.50 0.50/0.41

Table 1. Comprehensive experiment to demonstrate the effec-
tiveness of Lite-Geo. We report precision, recall, and F1 scores
on the Tanks and Temples dataset, comparing results with (left)
and without (right) Lite-Geo.

where p = [u, v]T refers to the 2D coordinates on the im-
age plane, p̃ represents the homogeneous form of p, and K
denotes the intrinsic parameters of the camera.

2. Further Analysis of Lite-Geo
To better understand the influence of Lite-Geo, we conduct
detailed experiments using the TNT dataset. As illustrated
in Tab.1, the integration of Lite-Geo significantly improves
both precision and recall metrics across all reconstructed
scenes. Notably, the improvement in precision is more pro-
nounced, which indicates that Lite-Geo effectively reduces
errors in structural alignment.

Despite these improvements, certain challenges persist
in specific scenarios. For example, in large-scale outdoor
scenes such as Courthouse, and complex indoor environ-
ments like Meetingroom, both precision and recall remain
relatively low. Large-scale outdoor environments often fea-
ture high variability in lighting, texture sparsity, and scale
changes, which make precise feature matching and align-
ment more difficult. Similarly, complex indoor scenes
with intricate geometries, occlusions, and cluttered details
present significant challenges for achieving accurate recon-
struction. These limitation serves as a key direction for our
future work.

3. Qualitative Results
To further demonstrate the effectiveness of CarGS, we
present additional visualizations. As shown in Fig.1, quali-
tative results on the TNT dataset are provided, showcasing
the ground truth, rendering, normal map, and depth map.
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Figure 1. Qualitative results of the CarGS. Including the ground truth, rendered outputs, normal maps, and depth maps, offering a
detailed visual representation of its performance.
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