
ForestLPR: LiDAR Place Recognition in Forests Attentioning Multiple BEV
Density Images

Supplementary Material

This supplementary material is structured as follows. In
Section 1, we provide more details about the datasets and
evaluation metrics. Section 2 provides the implementation
details of our method and the compared baselines. In Sec-
tion 3, we show some additional ablation studies. Finally,
Section 4 contains additional quantitative results and quali-
tative results.

1. Dataset and Evaluation Metrics Details

Wild-Places. For both environments, Sequences 01 and 02
were collected on the same day, with Sequence 02 follow-
ing the reverse route of Sequence 01. Sequence 03 was col-
lected six months later and followed extended alternative
routes, while Sequence 04 was collected 14 months after
Sequence 01 and followed the same routes. Sequences 03
and 04 are reserved for intra-sequence loop closure detec-
tion, and all sequences are used for inter-sequence evalua-
tion to test the challenges posed by long-term variations.

Along with accurate 6DoF ground truth, each submap
corresponds to a .pcd file containing the x, y, and z values
of its points. All submaps are sampled from the map within
a one-second window at the corresponding timestamp. For
training and validation, to more objectively evaluate the
algorithm capabilities, we exclude the query neighboring
frames that are temporally adjacent to the query from pos-
itive samples. This processing is similar to intra-sequence
validation.

ANYmal Dataset. The dataset was gathered in forests
by following a triangular route twice and once counter-
clockwise. Specifically, we first use Open3D SLAM [3] to
generate the global poses and trajectory and remove frames
with no or slight motion. For our collected 10 HZ scan data,
every five frames are selected as keyframes, and the distance
between them is about 0.5m. We also only sample points
within a one second window of the corresponding times-
tamp for the submap. This means that a sequence of con-
secutive scans {P0, ...,Pn} are accumulated and transferred
into the frame of middle scan Pn/2, i.e., the keyframe. Fi-
nally, only the points with a diameter of 60m are preserved.
Compared to Wild-Places, the ANYmal dataset was col-

(a) Wild-Places (b) ANYmal Dataset

Figure 1. BEV visualization of point clouds in Wild-Places and
ANYmal dataset. The points are colored by the height: red means
the highest one, and blue means the lowest one. There are blind
spots in the lower left area.

Table 1. Platform comparison.

Dataset Platform LiDAR mount condition

Wild-Places handheld sen-
sor payload

an angle of 45°, 1.5m
above the ground

ANYmal quadrupedal
robot

vertically, 0.7m above
the ground

Botanic wheeled robot vertically, 1.16m above
the ground

lected by a quadruped robot with a lower LiDAR view-
point, leading to greater LiDAR angular variations during
robot walking. Furthermore, the LiDAR sensor is installed
at the front-top of the robot, leading to a large blind area in
scans (see Figure 1). The dataset contains a total of 1849
submaps (multi-frame registered scan samples) and 1239
loop closure-revisit pairs that meet the threshold, half of
which are reverse revisits.

Botanic Dataset. We repurpose the BotanicGarden
dataset [9], which is proposed for robot navigation in un-
structured natural environments. Its submap generation is
identical to the ANYmal dataset.

Here we summarize the LiDAR mounting configurations
(e.g., positions and angles). Wild-Places is collected by a
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handheld sensor payload, which includes a LiDAR mounted
at an angle of 45°, 1.5m above the ground. ANYmal dataset
is collected by the quadrupedal robot, which contains a ver-
tically mounted VLP-16, 0.7m above the ground. Botanic
dataset is collected by a wheeled robot Scout V1.0 from Ag-
ileX, which contains a vertically mounted LiDAR, 1.164m
above the ground.

Evaluation Metrics. Following the setting in [5], we
consider a query successfully localized if the retrieved can-
didate is within 3m.

For intra-sequence evaluation on all datasets, we use Re-
call@1 (R@1) and maximum F1 score (F1) as the metric.
In particular, a query image is considered correctly local-
ized if at least one of the top N ranked reference images is
a positive candidate. In addition, previous entries adjacent
to the query by less than t time difference are excluded from
the search to avoid matching to the same/nearby instances.
For Wild-Places, t = 600. For other datasets with a shorter
sequence length, t = 100.

For inter-sequence evaluation on Wild-Places, Recall@1
and mean reciprocal rank (MRR) are used, where

MRR =
1

N

∑N
i=1

1

ranki
,

and ranki is the rank of the first retrieved positive candi-
date to query submap i. If none of the top 25 candidates are
correct, the reciprocal rank is 0. The final R@1 and MRR
values are the means of the respective R@1 and MRR val-
ues overall evaluations.

2. More Implementation Details
PointPillar [7], TransLoc3D [13], MinkLoc3Dv2 [6],
LoGG3D-Net [11], and BEVPlace [10] are all state-of-the-
art learning-based methods and have saturated performance
on the popular urban LiDAR datasets. ScanContext [4] and
MapClosures [2] are handcrafted approaches, which first
encode the highest z-value of bins or extract FAST and ORB
features and use the key points for loop detection.

The implementation details of all compared baselines in
Table 1 and 2 of the main paper are as follows:
• PointPillar1: Remove the classifcation head and add an-

other GeM layer and L2Norm to generate the final fea-
tures. Use pre-processed point cloud as input and Triplet
loss to finetune the backbone.

• TransLoc3D2: Use configs/transloc3d baseline cfg.py
and set quantization size to 1.

• MinkLoc3Dv23: Use models/minkloc3dv2.txt. Set coor-
dinates to polar, quantization step to (0.8, 0.15, 0.15), and
normalize embeddings to True.

1github.com/zhulf0804/PointPillars
2github.com/slothfulxtx/TransLoc3D
3github.com/jac99/MinkLoc3Dv2

• LoGG3D-Net4: Use the default setting in Wild-Places.
• ScanContext5: Use the default setting. To compare fea-

ture extraction modules fairly, we change the elevation
BEV images generated from the whole point cloud to
density BEV images generated from pre-processed point
cloud, which is the same as ours.

• BEVPlace6: We use adjusted BEV density images as in-
put and finetune the model with triplet loss, margin = 0.3.

• MapClosures7: Similarly, we use the adjusted BEV den-
sity images as input. Following the setting in the paper,
we use a threshold of 50 bits on the Hamming distance for
descriptor match. The threshold for the number of inliers
obtained from RANSAC alignment is set to 10.

• Ours hyper-parameter selection: 1. Multi-level feature
extraction: we refer to the settings in [12]. 2. Based on the
distance threshold (3m), we adjusted the overlap thresh-
old for comparability. 3. Backbone design: we adopted
commonly used hyper-parameters in computer vision.

3. Additional Ablation Studies
First, we give more results to show the difference between
density or height when generating BEV images for our
model and Scan-Context. Then, we evaluate the model with
different hyper-parameters. Finally, we present evaluation
results for the model trained with a distance-based sample
mining strategy and other similar overlap-based strategies
[1, 2].

BEV Images Generation. We ablate our choice of
density images over elevation images by modifying our
pipeline and Scan-Context in intra- and inter-sequence eval-
uations of Wild-Places. Specifically, we use pre-processed
point clouds as input and generate elevation images.

As shown in Table 2, for all three models, although BEV
elevation images can also reflect the spatial distribution of
trees, density is better than elevation in all tests. On the
one hand, the pre-processed point cloud has removed points
above 6m, and the same elevation of many pixels causes the
loss of features. On the other hand, the elevation image is
also sensitive to the orientation of the sensor (pitch and roll),
as the maximum height recorded varies with the distance
and occlusions between the scanner and the object. More
qualitative results refers to Section 4.2.

Hyper-parameters Sensitivity. Considering that S (the
number of slices) and △h (height interval of slices) setting
in height cropping are the most critical hyper-parameters
for our work, we perform ablation experiments on them by
setting △h = 0.5m, 2.5m respectively.

For setting different △h, the results show that 1m is a
better choice. When digging into the samples, we find that

4github.com/csiro-robotics/Wild-Places/scripts/eval/logg3d
5github.com/csiro-robotics/Wild-Places/scripts/eval/scancontext
6github.com/zjuluolun/BEVPlace
7github.com/PRBonn/MapClosures



Table 2. Ablation studies on BEV generation. “elevation” denotes using maximum height to generate BEV images, and the results with
“density” are the same as those in Table 1 and Table 2 of the main paper.

Method Setting V-03 V-04 K-03 K-04 Inter-V Inter-K

F1 R@1 F1 R@1 F1 R@1 F1 R@1 R@1 MRR R@1 MRR

Scan
Context [4]

elevation 8.54 34.73 23.28 50.05 15.40 35.03 42.56 55.91 36.37 41.39 24.88 30.44
density 37.66 54.80 64.49 75.99 34.33 50.23 66.85 63.48 57.23 58.11 52.81 55.82

Single BEV elevation 42.35 46.64 32.80 43.01 39.42 51.56 54.36 61.93 34.20 55.84 35.07 56.73
density 52.17 53.70 68.07 64.46 58.85 54.72 67.93 70.03 52.59 69.87 53.45 69.71

Ours elevation 44.81 63.09 39.20 58.47 43.40 59.51 56.77 68.08 45.76 64.34 46.81 65.78
density 64.15 76.53 78.62 82.33 65.01 74.89 81.97 76.73 77.14 84.26 79.02 83.87

Table 3. Ablation studies on slice number when generating multiple BEV density images from pre-processed point clouds. * represents
the results already given in our main paper.

Slice
Number △h

V-03 V-04 K-03 K-04 Inter-V Inter-K ANYmal Botanic-03 Botanic-06

F1 R@1 F1 R@1 F1 R@1 F1 R@1 R@1 MRR R@1 MRR F1 R@1 F1 R@1 F1 R@1

10 0.5 57.63 70.81 73.15 77.83 60.35 68.12 77.48 70.54 71.59 76.34 73.86 74.19 75.02 70.43 71.87 79.36 73.07 76.21
5 1* 64.15 76.53 78.62 82.33 65.01 74.89 81.97 76.73 77.14 84.26 79.02 83.87 81.45 71.87 78.21 84.81 78.82 82.00
2 2.5 55.68 67.91 70.86 75.19 58.71 63.78 72.57 65.93 64.71 72.48 70.36 71.25 74.31 70.82 70.34 77.56 71.94 75.92

0.5m is too small to obtain effective density information
and 2m is too large, causing confusion between different
heights. So, we select 1m as the final hyper-parameter in
our main paper based on experience.

Positive Sample Mining Strategy. In this experiment,
we adopt the same global features from our model and com-
pare our method based on different ground truth definitions
(i.e., positive sample mining strategies). “Distance” uses
the ground truth based on physical distance 12.5m as the
threshold for positive examples and 50m as the threshold
for negative examples), and “Overlap” denotes the similar
overlap-based method [1, 2] (0.9 as the threshold for posi-
tives and 0.5 as the threshold for negatives), which is similar
to [8] for visual place recognition.

The results in Table 4 indicate that overlap-based mining
is more helpful than physical distance-based mining, espe-
cially for V-03, which contains a large number of reverse
revisits. That’s because the overlap calculation directly cor-
responds to the degree of common vision. As shown in Fig-
ure 2, for data with blind spots, physical distance and degree
of common vision are no longer proportional, and it’s more
reasonable to consider perspective simultaneously. In addi-
tion, our overlap calculation is:

o (Vq,Vp) =
|Vq ∩ Vp|
|Vq ∪ Vp|

, (1)

which is more suitable for handling blind spots than those
works [1, 2] that utilize min(·) as denominator.

In some extreme cases, the valid points within the scan
range of one sample may completely cover another. Then,

(a) Reverse visits with same physical distance.

(b) Visits with same physical distance.

Figure 2. Illustration of the effect of blind spots on the degree of
common vision between two frames of point clouds.

the similarity calculated by [1, 2] is 1, which is unreason-
able, while Eq. (1) can better ensure the rationality of sam-
ple mining.



Table 4. Ablation studies on positive sample mining strategy. All ablations use our final backbone and are trained on Wild-Places.

Strategy V-03 V-04 K-03 K-04 Inter-V Inter-K ANYmal Bo.-03 Bo.-06

F1 R@1 F1 R@1 F1 R@1 F1 R@1 R@1 MRR R@1 MRR F1 R@1 F1 R@1 F1 R@1

Distance 57.58 70.14 75.86 78.12 60.95 70.81 78.34 72.98 72.56 76.85 75.41 76.48 76.46 67.59 74.31 80.86 75.49 79.63
Overlap[1, 2] 61.04 74.82 77.91 80.26 63.25 73.59 80.31 74.92 75.08 78.31 77.63 78.52 80.03 70.51 75.96 81.98 77.38 80.14

Ours 64.15 76.53 78.62 82.33 65.01 74.89 81.97 76.73 77.14 84.26 79.02 83.87 81.45 71.87 78.21 84.81 78.82 82.00

Table 5. Additional studies on removing ground and tree top from point clouds. Here we show the results of the methods with cropping
(pre-processed point clouds) and without cropping (raw point clouds).

Method Crop V-03 V-04 K-03 K-04 inter-V inter-K

F1 R@1 F1 R@1 F1 R@1 F1 R@1 R@1 MRR R@1 MRR

Scan-Context [4] × 4.77 11.03 36.19 43.01 30.65 45.81 50.58 60.33 46.76 48.87 56.40 59.57
✓ 37.66 54.80 64.49 75.99 34.33 50.23 66.85 63.48 57.23 58.11 52.81 55.82

BEVPlace [10] × 0.73 2.32 28.65 48.13 26.83 34.68 60.59 73.61 33.93 56.16 34.99 58.51
✓ 6.79 24.04 43.67 63.50 32.87 40.62 60.82 81.74 51.91 67.68 41.40 61.59

MapClosures [2] × 12.99 6.95 29.44 14.94 25.05 14.35 65.38 55.05 26.68 27.44 19.48 20.22
✓ 38.47 23.82 49.95 25.61 21.35 11.95 70.62 54.59 34.31 37.83 19.35 21.16

4. Additional Results

4.1. Point Cloud Cropping

As mentioned in the main paper, the results of BEV-based
methods in Tables 1 and 2 are also computed from pre-
processed point clouds.

To prove that ground and tree top removal is general for
single BEV-based baselines in forests, we give more results
in Table 5. For single BEV-based baselines without crop-
ping, we use whole point clouds to generate BEV density
images and re-train BEVPlace on Wild-Places. It is worth
noting that we have tried using pre-processed point clouds
as input and training LoGG3D-Net on Wild-Places, but the
performance was poor. We speculate that it is a problem
with the hyper-parameter settings during training. For fair-
ness, we do not give the results here for comparative analy-
sis.

As shown in Table 5, using the whole point cloud has a
detrimental impact on all single BEV-based methods, with
performance drops by up to more than 40% across the
board. It demonstrates the importance of removing ground
and tree tops for single BEV-based place recognition meth-
ods in forests.

As the special case in Table 5, Scan-Context without
cropping achieves better performance on inter-K than the
cropped one. MapClosures also shows some opposite sit-
uations on K-03/04 and inter-K. Both of these two meth-
ods are non-learning based. This may be because trees in
Karawatha are not as tall as those in Venman, and more
discriminative density information from the tree top can be
captured during scanning. (more visualization examples are
shown in 4.2.)

In a word, the results provide solid insights about remov-
ing ground and tree tops in forests to guide future related
works.

4.2. Qualitative Results
As shown in Figure 3, BEV images from the cropped point
cloud are more recognizable, and the ones using the density
value are easier to identify. The BEV elevation images are
sensitive to poses because the coordinate values of points
can severely vary when the robot moves. In contrast, the
BEV density images are more robust because point cloud
density does not depend on specific points.

Figure 4 gives the height histograms of random samples
in the Karawatha-03 and Venman-03 sequence, illustrating
the height difference of trees in the Karawatha and Venman
datasets. It supports our speculations that some algorithms
present different performance levels on different sequences
due to different scan patterns.

4.3. Inter-sequence Evaluation
As a supplement to TABLE 2 in the main paper, we pro-
vide the complete results of all compared methods on inter-
sequence evaluations in Table 6, including R@1 and MRR
scores.
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