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1. Overview

In this Supplementary Material, we first introduce the tech-
nical details of HUNet in Sec. 2, including S(-), S(+), F5(-)
and F5'(-) in Sec. 2.1 and the mechanisms of PWA and
PSWA in Sec. 2.2. Following that, Sec. 3 provides a de-
tailed description of the experiments, covering Sec. 3.1 for
detailed experimental settings, Sec. 3.2 for additional com-
parative experimental results, and Sec. 3.3 for experiments
under various noise levels. Finally, Sec. 4 presents a feature

visualization analysis, validating DFFM’s role in HUNet.

2. Relevant Technical Details

2.1. Details of the Sampling Stage

Before sampling, a complete image with dimensions [, X [,

is partitioned by Fg(-) into a tensor of shape %@ii}; x H x

W. The inverse process, ]—'gl(~), corresponds to recon-
structing the tensor output from the reconstruction stage
back into the complete image of size I, X l,,. To accom-
modate the sampling operation, the patch size H X W in
HUNet is typically configured as B x B.

The sampling operation can be abstracted as a forward
pass using a convolution kernel of size B x B with a stride
of B, which takes a single input channel and produces
T X B x B output channels. This operation is denoted as
S(:) : RBXB — R™*BXB 'where 7 x B x B is rounded
to the nearest integer, ensuring consistency in dimensions.
In contrast, the initialization of x( can be interpreted as a
transposed convolution operation using the same convolu-
tional kernel, denoted as S(-) : R™*BxB — RBEXB_ For
input images, zero-padding is applied as necessary to en-
sure that [;, and [,, are integer multiples of B.

2.2. Details of PWA and PSWA

PWA and PSWA receive the input feature map Z € R=w*xe,
where w denotes the window size for segmentation, z de-
notes the number of windows, and ¢ denotes the number
of channels and perform attention operations based on the
windows and shifted windows, respectively. Unlike conven-
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Table Al. Detailed configurations of HUNet.

Configurations Default
learning rate le-04
optimizer AdamW
training epoch 200
learning rate schedule [50,150,180]
learning rate decay 0.1
patch size B 64
batch size 48
phases count n 7
ISS count © 3
channels count C 48
window size w 8
scaling factor r 4
S(-)/ 8(-) weight init | Gaussian random matrix
{pr}i_, init 0.5
A init 0.1
{Vk } 7, init 0.1

tional self-attention computations, when passing through
the linear layer Lg, Lk, Ly to get {Q, K, V}, PWA and
PSWA maintain Q with the same dimensions as Z, while
reducing the channel dimensions of K and V to ¢/ r2, re-
sultingin K, V € R=w*xe/r? expressed as:

Subsequently, spatial dimensions of K and V are reshaped
into the channel dimension to get K, and V ,:

K € R*/™ K, e R#Y/7xe )

w?xe/r? w? /r?
Ve R#W X/ v, e RFW/TXe 3

Thus, through reduction and reshaping operations, the
window scope of V,, and K, is reduced by a factor of r
while maintaining consistency in channel dimensions with
Q, ensuring consistency in multi-channel information cor-
respondence during attention map generation. Specifically,
the window size w is always set as an integer multiple



Table A2. PSNR (dB)/SSIM comparisons between HUNet and other SOTA methods on OST300 [20] at various CS ratios.

Dataset ‘ Methods ‘ 0.01 0.04 0.10 0.25 0.30 0.40 0.50

ISTA-Net* (CVPR 2018) 19.36/0.4208  22.06/0.5475 24.78/0.6896  28.53/0.8433  29.55/0.8722 31.34/0.9116 33.20/0.9396
CSNet™ (TIP 2020) 21.91/0.4983  24.33/0.6543 26.65/0.7875 29.86/0.8961 30.96/0.9178 33.19/0.9488  34.96/0.9649
DPA-Net (TIP 2020) 18.66/0.4593  23.22/0.6186  25.08/0.7314 28.46/0.8562 29.17/0.8797 30.53/0.9140  31.98/0.9385
OPINE-Nett (J-STSP 2020) | 21.94/0.5089 24.76/0.6703 27.16/0.7941  30.76/0.9021 32.54/0.9311 34.72/0.9591 36.61/0.9727
MADUN (ACM MM 2021) -/~ -/- 26.30/0.7578  30.03/0.8807 31.05/0.9030 32.90/0.9345 34.86/0.9567

AMP-Net-9BM (TIP 2021) | 22.31/0.5288 24.92/0.6651 27.35/0.7859  31.06/0.9009 -/- -/- -/-
DGUNet* (CVPR 2022) 22.36/0.5306 25.24/0.6973 27.84/0.8187 31.53/0.9170 32.44/0.9328 34.41/0.9558 36.44/0.9718
CASNet (TIP 2022) 22.47/0.5338 25.15/0.6911 27.66/0.8124 31.35/0.9135 32.35/0.9303 34.28/0.9541 36.28/0.9700
FSOINet (ICASSP 2022) 22.49/0.5335 25.25/0.6953 27.75/0.8159  31.55/0.9171 32.58/0.9338 34.57/0.9570 36.61/0.9723
TransCS (TIP 2022) 21.67/0.4826 24.86/0.6756 27.31/0.8018 31.07/0.9096 31.87/0.9252 34.17/0.9534 36.24/0.9701
OCTUF (CVPR 2023) 22.46/0.5298  25.19/0.6910 27.77/0.8148 31.60/0.9175 32.62/0.9339 34.61/0.9572  36.69/0.9726
OST300 TCS-Net (TCI 2023) 22.28/0.5127 24.74/0.6728  27.04/0.8000 30.55/0.9084 30.81/0.9145 32.55/0.9400 34.52/0.9633
CSformer (TIP 2023) 22.48/0.5299  25.19/0.6843  27.53/0.7950  31.05/0.9038 -/- -/- 35.75/0.9657
DPC-DUN (TIP 2023) 20.12/0.4645 23.61/0.6249  26.25/0.7561  29.93/0.8792  30.94/0.9013  32.81/0.9335 34.69/0.9554
AutoBCS (TCYB 2023) 21.65/0.5176  24.51/0.6769  26.87/0.7991 30.52/0.9083  31.33/0.9230 33.13/0.9478  34.73/0.9640
MTC-CSNet (TCYB 2024) | 22.38/0.5217 24.92/0.6732 27.32/0.8053 31.06/0.9110 31.47/0.9278 32.98/0.9427 34.91/0.9532
LTwIST (TCSVT 2024) 22.17/0.5105 24.86/0.6767 27.42/0.8064 31.16/0.9115 32.31/0.9273 34.10/0.9513  36.12/0.9643
NesTD-Net (TIP 2024) 22.58/0.5313  25.17/0.6920 27.73/0.8156 31.60/0.9170 32.48/0.9322 34.57/0.9565 36.65/0.9720
SCTT(1ICV 2024) -I- -/- 25.27/0.7207 -/- 29.03/0.8656 -/- 31.38/0.9160
UFC-Net (CVPR 2024) 22.40/0.5225 25.00/0.6830 27.53/0.8079 31.26/0.9108 32.25/0.9284  34.23/0.9529  36.31/0.9698
CPP-Net (CVPR 2024) 22.76/0.5400  25.39/0.7001  27.93/0.8207 31.67/0.9185 32.71/0.9347 34.66/0.9573 36.68/0.9724
HUNet (Our Method) 22.78/0.5409  25.63/0.7103  28.20/0.8266 32.06/0.9222  33.09/0.9385 35.09/0.9600 37.29/0.9749

of the scaling factor r.

Attention(-), in PWA/PSWA is formulated as:

The self-attention computation,

Attention(Q, K, V) = Softmax(QK, + B)V,. (4)

Table A3. Comparison of the parameters, FLOPs, inference time
and inference memory in the case of CS ratio 7 =0.1.

Here, B represents alignment-relative positional embed-
dings, obtained through interpolation of the original embed-
dings [10]. Notably, by dividing the channels into multiple
groups, the aforementioned equation can be seamlessly ex-
tended into a multi-head version.

Ground Truth

NesTD-Net

CPP-Net

PSNR(dB)/SSIM 30.06/0.8502 30.63/0.8513 29.75/0.7594 30.72/0.8578

Figure Al. The visually examples of noise influence under Gaus-
sian noise with ¢ = 0.003 on dataset Set14 [22] at sampling rate
7 =0.25.

3. More Experiments

3.1. Experimental Settings

The training of HUNet is conducted using image patches
of size 64 x 64, derived from 800 images in the DIV2K
[1] dataset. The detailed parameter configurations used in
HUNet are provided in Tab. A1l.

Inference Inference
Methods Params. (M) | FLOPs (G) | jme (s) | memory (MB) PSNR (dB)
LTwIST 23.28 158.9 0.31346 552 27.42
NesTD-Net 5.36 372.58 0.23674 6140 27.73
CPP-Net 16.9 166.93 0.19615 2234 27.93
UFC-Net 1.65 112.42 0.21517 1506 27.53
HUNet | 211 | 2072 | 0.18203 | 1830 | 2820

Table A4. Comparison of PSNR (dB)/SSIM under Gaussian noise
intensities o € {0.001, 0.002,0.004, 0.006} on Urban100.

Methods ‘ 0.001 0.002 0.004 0.006
DGU-Nett | 31.81/0.8933  30.78/0.8626  29.39/0.8123  28.36/0.7716
OCTUF 32.00/0.8942  30.92/0.8633  29.45/0.8120 28.41/0.7707
DPC-DUN | 30.33/0.8506 29.18/0.8105 27.67/0.7460  26.65/0.6963
NesTD-Net | 32.08/0.8947 30.74/0.8634  29.48/0.8128  28.43/0.7727
CPP-Net | 32.14/0.8949 31.05/0.8636  29.59/.8136  28.56/0.7732
UFC-Net | 31.03/0.8881 30.22/0.8575 29.00/0.8072 28.05/0.7660
HUNet 32.37/0.8987 31.18/0.8670  29.65/0.8162 28.58/0.7752

3.2. More Comparison

In this section, we first perform a comprehensive eval-
uation of the top-performing algorithms discussed in the
main text [2-9, 11-14, 16-19, 21]. To extend the analy-
sis, we supplement these with additional methods: ISTA-
Net™ [23], MADUN [15], OPINE-Net* [24], AMP-Net-
9BM [25], and AutoBCS [5]. All experimental re-
sults are consolidated in Tab. A2, where the best and
second-best metrics are marked in red and blue, respec-
tively. It can be observed that HUNet consistently outper-
forms the latest state-of-the-art methods, such as NesTD-
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Figure A2. Visualization analysis of feature maps. The output feature maps from the 2nd, 3rd, 4th and 6th phases are displayed. The first
and second rows present the feature visualization results of Net-1 and Net-2, respectively, while the third and fourth rows show {x }7_;

and {wy }—; of HUNet.

Net and UFC-Net, across various sampling rates 7 €
{0.01,0.04,0.10,0.25,0.30, 0.40,0.50} in terms of PSNR
and SSIM, highlighting its capability for superior image re-
construction. Additionally, Tab. A3 provides a comparison
of HUNet with mainstream DUNs at a 0.1 sampling rate for
reference. PSNR results from OST300 dataset, inference
time and inference memory are the average of reconstructed
256 x 256 images. It can be observed that HUNet achieves
the best reconstruction performance while maintaining op-
timal inference speed.

Table AS. Comparison of PSNR (dB)/SSIM under salt-and-pepper
noise ratios § € {0.01,0.02,0.04,0.06} on Set14.

Methods ‘ 0.01 0.02 0.04 0.06

DGU-Net" | 29.04/0.8212  27.13/0.7432  25.03/0.6440 23.56/0.5722
OCTUF 29.02/0.8219  27.16/0.7438  25.05/0.6443  23.60/0.5733
DPC-DUN | 27.36/0.7649  25.64/0.6727  23.70/0.5541 22.35/0.4768
NesTD-Net | 29.06/0.8221  27.17/0.7436  25.06/0.6462  23.70/0.5771
CPP-Net | 29.03/0.8202 27.20/0.7463  25.11/0.6461 23.72/0.5782
UFC-Net | 27.01/0.7926 25.30/0.7172  23.52/0.6220 22.41/0.5576
HUNet 29.09/0.8222  27.21/0.7464  25.13/0.6465 23.74/0.5790

3.3. More Comparison under Noises

We introduce varying levels of salt-and-pepper noise and
different intensities of Gaussian noise to the Urban100 and
Set14 datasets to evaluate HUNet’s performance in han-
dling noisy images within the context of compressed sens-

ing. The results of this evaluation, presented in Tab. A4 and
Tab. A5, compare HUNet’s performance with other state-
of-the-art methods under Gaussian and salt-and-pepper
noises, respectively. It is evident that HUNet consistently
outperforms all tested methods in reconstruction perfor-
mance across different noise environments at a CS ratio
7 = 0.25. Moreover, to further highlight our model’s re-
markable performance, Fig. A1 presents several visual com-
parisons at a sampling rate 7 = 0.25 under Gaussian noise
with & = 0.003. The recovery images obtained by HUNet
under noisy conditions exhibit details more faithful to the
originals.

4. Visual Analysis

Furthermore, we visualize the inter-phase feature maps,
{x}7_,, and intra-phase feature maps, {wy}}?_, of
HUNet. Specifically, for wy € RT*XWXC we apply prin-
cipal component analysis along the channel dimension to
extract features, projecting them onto R *W>1 for easier
observation. Given that existing DUNs, such as CPP-Net,
typically only fuse information of type X obtained at each
phase, we select the variant Net-2 to compare with HUNet
and assess the impact of different fusion strategies. To better
assess the impact of DFFM on model reconstruction perfor-
mance, we uniformly set the number of training epochs to
30. As shown in Fig. A2, Net-1, which omits DFFM, per-



forms worse than HUNet in phase-by-phase recovery, re-
sulting in reconstruction PSNR and SSIM values that fall
significantly below those of HUNet. Net-2, which solely
fuses {xx}7_,. lacks an explicit modeling of the recon-
structed image through inter-phase feature maps, leading to
suboptimal PSNR and SSIM values in the final reconstruc-
tion. In contrast, the {xy }}'_, of HUNet exhibit phase-wise
enhancement, with different phases of wy, focusing on vary-
ing aspects of the image, culminating in the most refined
reconstructed image through final fusion and further vali-
dating the effectiveness of DFFM’s dual-path feature fusion
strategy.
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