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A. Impact of the Training Strategies
In our experiments, we observed that training strategies
have a significant impact on point-based methods, whereas
projection-based methods are typically less sensitive to the
choice of training strategies. This paper explores three
training strategies used in LidarGait [4] (i.e. Strategy-L),
Baseline (i.e. Strategy-B), and our proposed LidarGait++
(i.e. Strategy-L++).

We found that both projection- and point-based methods
are particularly sensitive to the initial learning rate. While
point-based methods face more challenging on optimization
due to the sparse and unordered nature of point clouds. A
larger initial learning rate helps in effectively initializing
point-based models. Additionally, we observed that using
a large batch size and automatically adjusting the learning
rate dynamically can slightly improve the model discrimi-
nativeness. From Tab. 2, it is clear that our point-based Li-
darGait++ outperforms the SoTA projection-based method,
LidarGait, under all training strategies.

Table 1. Comparison on three training strategies.

Setting Strategy-L Strategy-B Strategy-L++

Batch Size (p, k) (8, 8) (8, 8) (32, 4)
Initial Learning Rate 0.1 0.01 0.1
Learning Rate Scheduler MultiStepLR MultiStepLR CosineAnnealingLR
Optimizer SGD SGD SGD
Loss Functions Triplet + CE Triplet + CE Triplet + CE

Table 2. Fair comparison to SoTA under same training strategies.
The result of HMRNet [1] is not included because it has not been
open-sourced.

Method Strategy-L Strategy-B Strategy-L++

LidarGait 86.8% 83.5% 86.2%
LidarGait++ 90.8% 87.6% 92.7%

B. Hierarchical Pyramid Architecture
We conducted an ablation study to evaluate the effectiveness
of the hierarchical pyramid architecture within the pyramid
point pooling layer. Additionally, we explored the impact

Table 3. Impact of hierarchical pyramid scale and bin numbers on
performance in pyramid point pooling.

Scale List of #Bin Result (%)

1 [1] 80.8
2 [2] 86.2
3 [4] 91.3
4 [8] 92.6
5 [16] 92.5
1 [1] 80.8
2 [1, 2] 87.1 (+0.9)
3 [1, 2, 4] 90.7 (-0.6)
4 [1, 2, 4, 8] 92.2 (-0.3)
5 [1, 2, 4, 8, 16] 92.7 (+0.2)

of scale and bin number, as outlined in Tab. 3. The re-
sults show that hierarchical pyramid learning significantly
boosts performance, particularly when using the partitions
[1, 2] and [1, 2, 4, 8, 16], which achieve notable improve-
ments of +0.9% and +0.2%, respectively. However, inter-
mediate configurations such as [1, 2, 4] and [1, 2, 4, 8] ex-
hibit slight performance drops, suggesting that an optimal
balance in bin selection is crucial.
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Figure 1. Illustration of alignment improvement in the umbrella
subset through size-aware learning.

C. Superior Performance on Umbrella Subset
LidarGait [4] demonstrated that projection-based methods
perform poorly on the umbrella subset of the SUSTech1K
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Figure 2. Qualitative visualization. Best viewed in Zoom-in pdf.

dataset. This limitation stems from these methods’ reliance
on normalization to align 2D imagery inputs, which causes
misalignment between the body’s head and the umbrella,
as shown in Fig. 1. To address this issue, our approach
introduces an end-to-end feature extraction process from
point cloud data, incorporating a size-aware learning mech-
anism. As shown in Fig. 1, this size-aware altitude align-
ment ensures that all gait sequences in point cloud form are
consistently aligned to the ground plane. This alignment
effectively resolves the spatial misalignment issues com-
mon in 2D gait recognition by ensuring subjects with simi-
lar heights are naturally grouped together, while excluding
the influence of covariates such as the umbrella. By incor-
porating altitude information, our method significantly en-
hances alignment, leading to improved performance on the
umbrella subset.

D. Qualitative analysis

We visualize t-SNE and intra-class/inter-class distance
in Fig. 2. With size prior, LidarGait++ minimizes intra-
class distance and variance, resulting in tighter clustering.
The blue samples are clustering with others by shape for Li-
darGait, while our method groups blue samples by height,
eliminating the ambiguity (red circle).

E. Robustness of Size Prior

We evaluated robustness on SUSTech1K under three chal-
lenging scenarios: partial occlusion, multiple persons, and
varying heights, as shown in Fig. 3. By randomly occlud-
ing partial point cloud sequences, our method showed supe-

rior performance over projection-based LidarGait as shown
in Tab. 4. Our P3 layer and size-aware learning mechanism
effectively enhance robustness, addressing occlusion with
size-awareness and locality.

Figure 3. Robustness evaluation on SUSTech1K(%).

Table 4. Performance comparison under challenging conditions.

Model Method Without
Occlusion

Partial
Occlusion

Multiple
Person

Varying
Height

LidarGait Projection-based 86.8 56.6 58.8 56.9
PointNet++ (Baseline) Point-based 77.1 52.6 55.0 53.1
↪→ LidarGait++ (Ours) Point-based 92.7 62.3 65.5 62.7

F. Generalizability.

From Tab. 5, we can observe that all point-based models can
enjoy accuracy gains consistently from our methods.

Table 5. Generalization on other models.
PointNet [2] PointNet++ [3] DGCNN [5] PointTransformer [5]
32.2%(+6.9) 92.7%(+15.6) 85.5%(+33.7) 71.8%(+27.4)
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