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The supplementary material provides:
• Section 1: Multi-modal story generation ability.
• Section 2: First stage ablation; Number of [IMG] tokens; Different LLMs.
• Section 3: The limitation of CLIP score; Human Evaluation; Open Domain Evaluation on VIST.
• Section 4: Human evaluation.
• Section 5: Data preparation and implementation details.
• Section 6: Limitation discussion.
• Section 7: Responses to Rebuttal.
• Section 8: Qualitative results.
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face.

Figure 1. Our model StoryGPT-V extending stories in both language and vision: Gray part is the text descriptions from datasets. Blue
part corresponds to the model-generated frames and the continued written stories based on the previous captions.

1. Multi-modal Story Generation
Owing to StoryGPT-V design leveraging the advanced capabilities of Large Language Models (LLMs), it exhibits a unique
proficiency in that it can extend visual stories. StoryGPT-V is not merely limited to visualizing stories based on provided
textual descriptions. Unlike existing models, it also possesses the innovative capacity to extend these narratives through con-
tinuous text generation. Concurrently, it progressively synthesizes images that align with the newly generated text segments.

Figure 1 presents an example of a multi-modal story generation. Initially, the first four frames are created according to the
text descriptions from the FlintstonesSV [1] dataset (gray part). Subsequently, the model proceeds to write the description
for the next frame (blue part), taking into account the captions provided earlier, and then creates a frame based on this new
description (blue part). This method is employed iteratively to generate successive text descriptions and their corresponding
frames.

Our model represents a notable advancement in story visualization, being the first of its kind to consistently produce
both high-quality images and coherent narrative descriptions. This innovation opens avenues for AI-assisted technologies to
accelerate visual storytelling creation experiences by exploring various visualized plot extensions as the story builds.
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2. Ablation Studies
2.1. Effect of first-stage design.
In Table 1 lower half, we conducted an ablation study on how the stage-1 design contributes to the final performance. In the
first line, the stage-2 LLM is aligned with vanilla LDM fine-tuned on FlintstonesSV [1]. The second line aligns the LLM
output with our Char-LDM’s text embedding (Embtext), while the last line aligns with character-augmented fused embedding
(Embfuse) of our Char-LDM. The first two lines align to the same text embedding encoded by the CLIP [12] text encoder,
however, our Char-LDM enhanced with cross-attention control (Lreg) produces more precise characters. Different from
Embtext, the last line is aligned with Embfuse, which is augmented with characters’ visual features. This visual guidance
helps LLM to interpret references more effectively by linking “he, she, they” to the previous language and image context.

Models Aligning space Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓)
Vanilla LDM [14] × 75.37 87.54 52.57 58.41 32.36

Our Stage-2
Vanilla LDM Embtext 84.06 92.54 53.18 58.29 22.94
Char-LDM Embtext 86.10 93.46 54.92 60.15 21.30

Char-LDM Embfuse (default) 88.45 94.94 56.45 62.09 21.71

Table 1. The output of our stage-2 model (OPT) is aligned with conditional input of vanilla LDM [14] (finetuned on FlintstonesSV [1]),
our Char-LDM text embedding (Embtext) or character-augmented fused embedding (Embfuse).

2.2. Number of [IMG] Tokens
We further examined the impact of the number of added [IMG] tokens. As indicated in Table 2, aligning with the fused
embedding and setting R = 8 yields the best performance.

Models R Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓)
Embtext 4 82.14 90.18 54.28 59.58 21.33
Embtext 8 86.10 93.46 54.92 60.15 21.30
Embtext 16 83.77 91.07 54.08 60.21 21.58

Embfuse 4 86.23 93.43 54.57 59.61 21.97
Embfuse 8 88.45 94.94 56.45 62.09 21.71
Embfuse 16 85.35 91.96 52.93 58.86 23.73

Table 2. StoryGPT-V Ablations: Impact of R, the number of added [IMG] tokens. Embtext: the output of LLM (OPT) is aligned with
text embedding extracted from the text encoder; Embfuse: aligned with fused embedding Embfuse of first stage model.

2.3. Different LLMs (OPT vs Llama2)

Models # Params Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓) BLEU4 (↑) CIDEr (↑)
OPT [17] 6.7b 88.45 94.94 56.45 62.09 21.71 0.5037 1.6718
Llama2 [15] 7b 89.08 95.07 57.29 62.62 21.56 0.5169 1.7516

Table 3. Performance on FlintstonesSV [1] dataset with referential text using different LLMs.

Our primary contribution lies in leveraging Large Language Models (LLMs) for reference resolution for consistent story
visualization. In our work, we experimented with OPT-6.7b1 and Llama2-7b-chat2 models. It’s important to note that the

1https://huggingface.co/facebook/opt-6.7b
2https://huggingface.co/meta-llama/Llama-2-7b-chat

https://huggingface.co/facebook/opt-6.7b
https://huggingface.co/meta-llama/Llama-2-7b-chat


utilization of Llama2 was specifically to demonstrate its additional capability for multi-modal generation. The ablation study
of different LLMs was not the main focus of our research.

Our findings, as illustrated in Table 3, indicate only a slight improvement when changing from OPT [17] to Llama2 [15].
This marginal difference is attributed to the evaluation metric’s emphasis on image-generation capabilities, which assesses
whether the model’s visual output aligns well with first-stage Char-LDM’s conditional input space.

3. Evaluation
3.1. Text-image alignment.
CLIP [12] is trained on large-scale image-caption pairs to align visual and semantic space. However, a domain gap exists
between pre-train data and the story visualization benchmark. Therefore, we finetune CLIP [12] on the story visualization
datasets. However, we found it still hard to capture fine-grained semantics, either text-image (T-I) similarity or image-image
similarity (I-I), i.e., the similarity between visual features of generated images and corresponding ground truth images.

Upon this observation, we choose the powerful captioning model BLIP2 [6] as the evaluation model. We finetune BLIP2
on FlintstonesSV [1] and PororoSV [7], respectively, and employ it as an image captioner for generated visual stories. We
avoided direct comparisons to bridge the gap between BLIP2’s predictions and the actual ground truth captions. Instead, we
used the fine-tuned BLIP2 to generate five captions for each ground truth image and one caption for each generated image.
and report average BLEU4 [10] or CIDEr [16] score based on these comparisons.

Models CLIP (T-I) (↑) CLIP (I-I) (↑) BLEU4 (↑) CIDEr (↑)
StoryDALL-E [8] 0.4417 0.8112 0.4460 1.3373
LDM [14] 0.5007 0.8786 0.4911 1.5103
Story-LDM [13] 0.4979 0.8795 0.4585 1.4004
StoryGPT-V (Ours OPT) 0.5106 0.889 0.5070 1.6607

Table 4. Text-image alignment score for FlintstonesSV [1] with referential text descriptions in terms of CLIP [12] similarity, BLEU4 [10]
and CIDEr [16].

4. Human evaluation.
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Figure 2. Human evaluation results on FlintStonesSV [1] w.r.t visual
quality, text-image alignment, character accuracy and temporal con-
sistency.

we use Mechanical Turk to assess the quality of 100 sto-
ries produced by our methods or Story-LDM [13] on
FlintStonesSV [1]. Given a pair of stories generated by
Story-LDM [13] and our model, MTurkers are asked to
decide which generated four-frame story is better w.r.t
visual quality, text-image alignment, character accuracy,
and temporal consistency. Each pair is evaluated by 3
unique workers. In Figure 2, our model demonstrates
significantly better story visualization quality with accu-
rate and temporally coherent synthesis. The human study
interface is illustrated in Figure 3.

4.1. Open Domain Evaluation
We mainly focus on closed-domain story visualiza-
tion and character synthesis with ambiguous references.
VIST is a story visualization data but lacks consistent vi-
sual stories as it relies on people crafting stories for 5
selected photos from a Flickr album. And it doesn’t con-
tain character/background labels for a comprehensive evaluation in the setting of consistent story visualization like [1]. We
report CLIP image similarity and LPIPS score following [5] in Table 5.



Figure 3. Human study interface.

5. Implementation Details
5.1. Data preparation

Models CLIP-I (↑) LPIPS (↓)
LDM [14] 0.598 0.704
Story-LDM [13] 0.504 0.715
StoryGPT-V (Ours) 0.613 0.692

Table 5. Results on VIST [3] dataset.

FlintstonesSV [1] provides the bounding box location of each char-
acter in the image. We fed the bounding boxes into SAM [4] to ob-
tain the segmentation map of corresponding characters. This offline
supervision from SAM is efficiently obtained without the need for
manual labeling efforts.

5.2. Extending dataset with referential text
We follow Story-LDM [13] to extend the datasets with referential text
by replacing the character names with references, i.e., he, she, or they,
wherever applicable as shown in Algorithm 1. The statistics before and after the referentail extension are shown in Table 6.
Please refer to Story-LDM [13] implementation3 for more details on how the referential dataset is extended.

5.3. First stage training
We built upon pre-trained Stable Diffusion [14] v1-54 and use CLIP [11] ViT-L to extract characters’ visual features. We
freeze the CLIP text encoder and fine-tune the remaining modules for 25,000 steps with a learning rate of 1e-5 and batch size

3https://github.com/ubc-vision/Make-A-Story/blob/main/ldm/data
4https://huggingface.co/runwayml/stable-diffusion-v1-5

https://github.com/ubc-vision/Make-A-Story/blob/main/ldm/data
https://huggingface.co/runwayml/stable-diffusion-v1-5


Dataset # Ref (avg.) # Chars # Backgrounds

FlintstonesSV [1] 3.58 7 323
Extended FlintstonesSV 4.61 7 323
PororoSV [7] 1.01 9 None
Extended PororoSV 1.16 9 None

Table 6. Dataset statistics of FlintstonesSV [1] and PororoSV [7]

of 32. The first stage utilizes solely the original text description without extended referential text. To enhance inference time
robustness and flexibility, with or without reference images, we adopt a training strategy that includes 10% unconditional
training, i.e., classifier-free guidance [2], 10% text-only training, and 80% augmented text training, which integrates visual
features of characters with their corresponding token embeddings.

5.4. Second stage training
We use OPT-6.7B5 model as the LLM backbone in all experiments in the main paper. To expedite the second stage alignment
training, we first pre-compute non-referential fused embeddings residing in the input space of the first-stage Char-LDM. We
map visual features into m = 4 token embeddings as LLM input, set the max sequence length as 160 and the number of
additional [IMG] tokens as R = 8, batch size as 64 training for 20k steps. Llama2 is only trained for the experiments high-
lighted in the supplementary materials, demonstrating its capability for multi-modal generation and the ablation of different
LLMs. The training configuration is almost the same as OPT, except for batch size 32. All experiments are executed on a
single A100 GPU.

Please refer to all the details at the source code.

Algorithm 1 Character Replacement Algorithm

Definitions:
i: index for frames, ranging from 1 to N
Si: text description of frame i
Ci: a set contains immediate character(s) in the cur-
rent frame
for i ∈ {1, 2, . . . , N} do

if i = 1 then
Ci ← immediate character of Si

else
if Ci ⊆ Ci−1 then

if length(Ci) = 1 then
Replace Ci in Si with “he” or “she”

else if length(c) > 1 then
Replace Ci in Si with “they”

end if
end if
Ci ← Ci−1

end if
end for

• Fred is standing in the living room while holding the phone and talking.
• He is in a room. He picks up the phone and then speaks into the phone.
• He stands next to a small table in the room. He holds the receiver for a phone 

while talking to someone. He then hangs up the phone when he finishes the 
call.

• Fred and Barney are standing in a room. There is a telephone next to Fred. 
Barney is talking with something in his hand.
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Figure 4. DALL-E 3 [9] zero-shot inference on Flint-
stonesSV [1] dataset.

6. Limitations
Our method demonstrates proficiency in resolving references and ensuring consistent character and background conditions
in the context provided by guiding the output of a multi-modal Large Language Model (LLM) with character-augmented
semantic embedding. However, several limitations remain. The process involves feeding the previously generated frame
into the LLM to produce a visual output that aligns with the Latent Diffusion Model (LDM) input conditional space. This

5https://huggingface.co/facebook/opt-6.7b

https://anonymous.4open.science/r/story
https://huggingface.co/facebook/opt-6.7b


approach guarantees semantic consistency, enabling the generation of characters and environmental objects that resemble
their originals. Nonetheless, there are minor discrepancies in detail. This is because the visual output from the Large
Language Model (LLM) is aligned with the semantic embedding space rather than the pixel space, which hinders the complete
reconstruction of all elements in the input image. However, the current most powerful multi-modal LLM, i.e., DALL-E 3 [9],
could not solve this exact appearance replication in the multi-round image generation task (Figure 4), indicating an area ripe
for further exploration and research.

7. Response to Rebuttal
How does the proposed method maintain background consistency?

We introduce Limg (Eq.7) to provide pixel-level supervision for maintaining visual consistency during the second stage
training. Specifically, the visual prediction [IMG1−R] of the current frame generated from LLM, is conditioned on the
contextual input from the previous frames. Then Char-LDM utilizes the visual output from the LLM as guidance during
the denoising process to generate the current frame. The loss function Limg enforces gradient propagation to the LLM,
encouraging [IMG1−R] to preserve contextual consistency and generate frames closely aligned with the ground truth.
How to operate when the character mask is not available during inference?

Character masks are only used during the first stage of training to guide attention in Char-LDM for accurate character
generation. In the second stage, our model only takes contextual information (previous frames and captions) and the current
caption as input to generate the current frame, without requiring any masks. Therefore, the inference stage operates entirely
mask-free.
The structure and training methods of LLM Mapper and LDM Mapper.

We mentioned in line 315 that MapperLLM is a linear layer with trainable matrix Wv2t mapping from visual feature to
LLM’s input space commonly used in MLLMs [25,62]. We detailed the structure of MapperLDM in line 332-337 that it is a
4-layer encoder-decoder Transformer model similar to BLIP-2 QFormer [22]. Both modules are updated during the second-
stage training while keeping the LLM frozen. Additionally, we have included an anonymous link to the code implementation
in the main paper for reference.
The effectiveness of the LLM’s performance.

The LLM significantly enhances coreference resolution in story visualization. While our Char-LDM struggles with am-
biguous pronouns (e.g., he, she, they), our StoryGPT-V leverages the LLM’s strong reasoning ability to accurately generate
stories from ambiguous descriptions as shown below. We also investigate different LLMs in Tab.3 (supp).

Models Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓)
Char-LDM (Ours w/o LLM) 83.51 90.45 55.31 61.93 21.96
StoryGPT-V (Ours) 88.45 94.94 56.45 62.09 21.71

The multi-stage architecture (Char-LDM with SAM + LLM) introduces computational demands.
Please kindly note that SAM is only used only to obtain the segmentation masks in data processing, and is not involved in

training stage. Training: In the first stage, we train our Char-LDM model with 0.5 billion trainable parameters for 32 GPU
hours. During the second stage, the LLM remains frozen while the LLM Mapper, LDM Mapper, and the embeddings for
the additional tokens [IMG1−R] are updated. This stage involves only 0.2 billion trainable parameters for 24 GPU hours
training. The LLM does not introduce much computation overhead. When generating 4 frames, our model takes up additional
memory due to LLM, i.e., 15.86GB (Story-LDM) vs 25.05GB (Ours). However when increasing the number of generated
frames (e.g., 40), our model achieves faster, more memory-efficient inference with improved accuracy as shown below.

Models Speed (↓) GPU-Memory (↓) Char-Acc (↑) FID (↓)
Story-LDM 225.75 sec 75.92 GB 63.40 60.33
StoryGPT-V (Ours) 108.54 sec 26.10 GB 81.04 48.37

Performance on Mugen dataset.
MUGEN is not widely used in story visualization task, since it has only 3 characters and 6 backgrounds. We add our

results below.
How much diverse the proposed method is?



Models Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓)
Story-LDM 93.40 95.60 92.19 92.37 62.16
StoryGPT-V (Ours) 93.92 96.14 93.21 93.80 54.75

Our method leverages pretrained knowledge to generate diverse environmental objects in the story domain.
Comparing with SOTA methods, how many frames are used to generate a coherent story.

During inference, the first frame is generated solely from the first caption, and subsequent frames are autoregressively
generated using contextual information (previous generated frames and captions) and the current caption. We evaluate on 4
frames following previous setup, but also extend up to 40.

8. Qualitative Results
We provide more generated samples on FlintstonesSV [1] and PororoSV [7] with referential text as Figure 5-14 show.

• Barney is in the dining room at the table. He is holding a stack of papers and 
talking. 

• He stands in the room, laughing at a newspaper. 
• He opens a box while holding papers in a room. Then he hold the papers with 

both hands and laughs. 
• Betty is sitting on a chair in the living room.
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Figure 5. Qualitative comparison on FlintstonesSV [1] with
co-reference descriptions.

• Wilma is in the room. She at first has her eyes closed and then opens them.
• Fred is standing in the living room while talking.
• He is in the living room with arms stretched out.
• He is standing in the doorway of the living room, talking to someone off 

screen right.
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Figure 6. Qualitative comparison on FlintstonesSV [1] with
co-reference descriptions.
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• Fred is in a room of the house. He is shaking his head as he talks.
• He stands in the room and slightly shakes his head.
• Fred and Wilma are standing in the living room. Fred speaks to Wilma. Then 

he raises his hand, looks down and closes his eyes.
• They are standing in the living room. Wilma has her hands planted on her 

hips as Fred talks to her.
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Figure 7. Qualitative comparison on FlintstonesSV [1] with
co-reference descriptions.

• A man dressed with a hat holds a night stick to Fred's face while Fred leans 
on a mail box while they both stand on the sidewalk outside.

• Fred is leaning against the mailbox on the street.
• He is standing outside in front of the mailbox and is bending to pick up a 

letter.
• He is outside. He lights dynamite and then throws it into the shut.
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Figure 8. Qualitative comparison on FlintstonesSV [1] with
co-reference descriptions.

• Fred is in a room and talking with his eyes closed.
• He is walking through a room. He is frowning and talking.
• He is walking through the quarry.
• Mr slate is in his office. He is talking with his hand on his desk.
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Figure 9. Qualitative comparison on FlintstonesSV [1] with
co-reference descriptions.

• Wilma and Betty are standing in a desert. Wilma is speaking to Betty as Betty 
stands with her hand on her hip.

• They are standing in a desert while looking at something.
• They are standing outdoors. They are laughing together.
• The old man with pink color hat is in the desert. He is being dragged out to 

somewhere.
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Figure 10. Qualitative comparison on FlintstonesSV [1] with
co-reference descriptions.
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• Fred is speaking to someone in the room and points to himself.
• He is standing in a room. He point and then gestures with his arms while 

speaking.
• Fred and Wilma are in a room. Fred is looking back at Wilma, speaking to 

her. Wilma is listening.
• They are talking to each other in a good manner in a room.
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Figure 11. Qualitative comparison on FlintstonesSV [1] with
co-reference descriptions.

• Tongtong is talking while putting his hand around his mouth.
• Pororo is talking and crong is standing beside pororo.
• He is talking while moving his hand. Crong is looking at him.
• He is calling with his hands around his mouth. crong looks at him and turns his head.
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Figure 12. Qualitative comparison on PororoSV [7] with co-
reference descriptions.

• Pororo throws the blue fish to Crong. Crong is trying to catch it with his mouth and eat it.
• Pororo caught more fish. Pororo hands the fish to Crong.
• He is happy that he caught many fish. He is holding a fishing rod and a fish. He goes over to Crong to 

check how many fish Crong caught.
• He looks into the basket and is surprise. Then, he becomes angry at Crong.
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Figure 13. Qualitative comparison on PororoSV [7] with co-
reference descriptions.

• Pororo smiles and say something to his friends. Then pororo turns his body and keeps going.
• He is climbing the mountain. There is some snowstorm
• He walks through snowstorm. He finally reach a top of the mountain.
• He is surprised. He stands up on the top of the mountain. Mountain is so high.
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Figure 14. Qualitative comparison on PororoSV [7] with co-
reference descriptions.
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