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1. MEKA Dataset

1.1. Data Collection

To create the Multi-task Egocentric Kitchen Activities
(MEKA) dataset, we recorded videos of eight partici-
pants performing various kitchen activities while wear-
ing HoloLens 2 AR glasses, which provide a first-person
perspective. Using the task graphs of five tasks from
EgoPER [4], i.e., making coffee, oatmeal, tea, pinwheels,
and quesadilla, we designed feasible multi-task transcripts
that interweave two or three tasks within a single sequence.
We do not include videos involving more than three tasks,
as interleaving more than three recipes simultaneously is
uncommon in real-life scenarios. During recording, par-
ticipants received instructions for their next action through
an earphone, ensuring that the environmental audio in the
videos remained free of instructional speech. While our ex-
periments utilized only the RGB video streams, the MEKA
dataset includes multiple modalities: RGB, depth, audio,
gaze, and hand-tracking data, offering valuable opportuni-
ties for future research in multi-modal multi-task temporal
action segmentation.

1.2. Annotation and Statistics

We collected 100 multi-task egocentric videos, totaling ap-
proximately 12 hours of footage, with an average video
length of seven minutes. Each video contains an average
of 7.3 task switches. Leveraging the EgoPER dataset, we
observed that some tasks share common actions, such as
“transfer water to kettle” for both coffee and tea. To reduce
redundancy, we merged these shared actions, resulting in
50 distinct action classes, along with one background class,
for a total of 51 action classes. Each video in the MEKA
dataset is fully annotated with frame-wise action labels.

Before annotation, annotators reviewed sample videos
and corresponding annotations from the original EgoPER
dataset to ensure consistency in labeling. However, we still
observed discrepancies in the average durations for action
segments, as shown in Fig. 1. While most action segments
in MEKA are slightly shorter, a few actions, such as “slowly
pour the rest of water in circular motion” and “microwave
for X seconds”, show significant differences. These actions
often involve waiting time, which are reduced in the multi-
task setting as participants tend to switch to other tasks dur-
ing waiting times. Such discrepancies between the training
and testing datasets pose additional challenges for training
MT-TAS models using single-task videos.

Method Acc Acc-bg Edit F1@{10,25,50}

Concatenation 65.7 51.3 53.9 59.1 56.3 46.3
Random Switch 66.6 61.2 58.8 62.9 60.6 50.9
LLM Switch 67.8 63.7 64.2 68.9 66.8 56.0

Table 1. Ablation studies on MSB.

1.3. Ethical Considerations
All participants provided informed consent for data collec-
tion and distribution. The dataset has been anonymized to
protect participant privacy, and any identifiable information
has been removed. The MEKA dataset will be made pub-
licly available for research purposes upon publication.

2. Additional Implementation Details
We use GPT-4 [1] as the LLM to make task-switching de-
cisions in the MSB module and to generate relevant objects
for each action class in the DIVE approach. For video rep-
resentations, we extract 2048-dimensional I3D features [2],
pretrained on Kinetics, using a sliding window of 32 frames.
The video frames are sampled at 10 fps. We generate the
foreground and background frames by applying a Gaus-
sian filter with a standard deviation of 20 to the images.
In the FAAR module, we utilize the ViT-B/16 architec-
ture of CLIP [6] to extract 512-dimensional image features
from the foreground frames. We train the model with the
MSTCN backbone for 200 epochs, with the ProTAS back-
bone for 100 epochs, and with the FACT backbone for 350
epochs. Each training process is equally divided into two
stages: the first half focuses on training the model without
FAAR, and the second half incorporates FAAR. For domain
adaptation, we add a GRL before the output layer of the first
stage of the model architecture. The domain classifier is a
two-layer MLP with a hidden dimension of 64. The train-
ing time for the MSTCN and ProTAS backbones is approx-
imately 3 hours, while the FACT backbone takes around 20
hours, all conducted on an NVIDIA RTX 6000 GPU.

3. Additional Results
Ablation Studies on MSB. In Table 1, we evaluate the ef-
fectiveness of the LLM’s decisions on task switches in our
MSB module by comparing it with two alternative methods:
1) Concatenation, where we simply concatenate videos
of different tasks without interleaving actions; 2) Random
Switch, where we use the same blending method but decide
to continue or switch tasks randomly, without consulting the
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Comparison of Average Action Segment Duration on EgoPER and MEKA
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Figure 1. The average duration of action segments on EgoPER and MEKA.

LLM. The Concatenation method shows the lowest perfor-
mance across all metrics, with an overall accuracy of 65.7%
and F1@50 of 46.3%. This indicates that merely concate-
nating single-task videos without interleaving does not ade-
quately expose the model to the complexities of multi-task
scenarios, limiting its ability to generalize. The superior
Edit and F1 scores of the LLM Switch method suggest that
incorporating LLM decisions leads to more coherent and re-
alistic multi-task sequences compared to random decisions.
Analysis on SBL Recovered Features. We evaluated the
effectiveness of SBL using two analyses in Figure 2. We
first computed pairwise cosine distances between adjacent
frame features with and without SBL. The results show that
SBL significantly reduces abrupt feature changes at task-
switching points, leading to smoother transitions. Addition-
ally, we visualized feature embeddings of boundary frames
from two different tasks. Without SBL, the features exhibit
a large separation, indicating a lack of temporal coherence.
With SBL, the features of adjacent segments are brought
closer together, suggesting that SBL effectively bridges the
transition between tasks.
Ablation Study on DIVE. The DIVE module is a criti-
cal component of our framework, serving as the foundation
for both FBFC and FAAR modules. It generates the nec-
essary foreground and background frames for FBFC, and
allows FAAR to focus on action-relevant regions. Without
DIVE, FBFC becomes inapplicable, and FAAR must oper-
ate on full frames instead of foreground regions. To better

Method Acc Edit F1@10 F1@25 F1@50
No DIVE in training 74.1 73.2 76.5 75.4 65.8
No DIVE in testing 71.7 68.5 72.6 71.1 61.7
w/ DIVE (Ours) 75.7 74.9 79.7 77.6 67.4

Table 2. Ablation study on the DIVE module. Removing DIVE
during training or testing degrades performance.

understand DIVE’s contribution, we conducted two addi-
tional ablation experiments: No DIVE during training: We
removed FBFC and trained FAAR using full-frame inputs.
During testing, we restored DIVE and provided foreground
frames to FAAR. No DIVE during testing: We trained the
full model with DIVE but removed it at inference time,
feeding full images to FAAR. The results in Table 1 pro-
vide a comprehensive understanding of DIVE’s importance
in enabling foreground-aware learning and maintaining the
robustness of our segmentation framework.
Evaluation in Single-Task Settings. Although our ap-
proach is designed for multi-task temporal action segmen-
tation (MT-TAS), we also assess its effectiveness in stan-
dard single-task scenarios by training and evaluating on the
EgoPER dataset [4] using the MSTCN backbone. Inter-
estingly, our method not only generalizes to multi-task set-
tings but also enhances performance in single-task contexts.
Specifically, it improves accuracy by 6.7% and F1@50 by
7.2% compared to the baseline, demonstrating the robust-
ness and broad applicability of our framework.



Figure 2. Analysis on SBL recovered features. Left: Feature distances between adjacent frames, showing that SBL smooths abrupt
transitions at task switches. Right: T-SNE on feature embeddings of boundary frames from two tasks. Without SBL, features are widely
separated; with SBL, features are drawn closer.
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Figure 3. The relevant objects for each action class output by GPT-4, on the MEKA dataset.

Method Acc Edit F1@10 F1@25 F1@50
baseline 84.7 94.2 93.1 91.6 86.1
ours 92.4 97.9 96.4 96.4 93.3

Table 3. Evaluation on single-task videos.

Relevant Objects Output by LLM. Fig. 3 illustrates the
relevant objects identified by GPT-4 for each action class.
Overall, the outputs are highly effective, accurately cap-
turing the most critical objects needed for each action.
For instance, GPT-4 successfully identifies relevant objects
explicitly mentioned in the action descriptions, such as
“spoon” and “bowl” for “stir bowl using spoon”, and “drip-

per” and “mug” for “put dripper on mug”. More impor-
tantly, GPT-4 goes beyond merely extracting nouns from
action descriptions by including additional objects, such as
“thermometer” for “check water temperature” and “knife”
for “spread butter onto tortilla”, demonstrating its ability
to infer tools or objects that are implied rather than explic-
itly stated. This approach may introduce occasional noise
as well, such as including an unnecessary tool “spoon” for
“add honey to mug”. Overall, the results showcase GPT-4’s
strong capability to identify and enrich relevant objects.

Qualitative Results. In Fig. 4, we visualize the results
of our methods against two baseline models, ProTAS (on-
line) and MSTCN (offline), on two test videos. In the first
video, which involves making tea and pinwheels, the base-



line models struggle with task interleaving, frequently miss-
ing actions or misclassifying segments. In contrast, our
offline model accurately detects nearly all actions, closely
matching the ground truth and effectively capturing task
interruptions and resumptions. The second video presents
increased complexity with three concurrent tasks: making
oatmeal, quesadilla, and tea. While the performance of
the baseline models deteriorates further, our models main-
tain robust segmentation accuracy and correctly segment
most actions. Although our online model tends to over-
segment, it still handles task switches effectively. These
results demonstrate the superior capability of our method in
handling real-world multi-task scenarios in both online and
offline settings.

Additionally, we present two qualitative visualizations in
Figure 5. We display selected segments with three repre-
sentative frames, and the ground-truth labels (GT) along-
side our model’s predictions (Pred), including the action
class names, task labels, and corresponding start and end
times (in seconds). The first example illustrates a success-
ful case where our model not only predicts the correct ac-
tion classes of different tasks but also achieves highly ac-
curate temporal boundaries for each segment. The second
example is a failure case in a multi-task video involving in-
terleaved steps of making pinwheels and quesadilla. The
model correctly identifies the step “put banana slices on tor-
tilla” (quesadilla). However, during a subsequent step “in-
sert toothpick” (pinwheels), it misclassifies the beginning
and ending frames as “put banana slices on tortilla” (que-
sadilla). This confusion likely stems from the presence of
another tortilla covered with banana slices, which occupies
a significant portion of the frame and visually dominates
the scene, misleading the model. Additionally, during the
step “trim end” (pinwheels), the model incorrectly predicts
“slice using knife”, another step associated with making
quesadilla. This misclassification is likely due to the pres-
ence of a folded tortilla and a knife. These errors underscore
the need for instance-aware recognition, where the model
can differentiate between multiple visually similar objects,
such as two different tortillas used in separate tasks. Incor-
porating object instance disambiguation could substantially
improve segmentation performance in complex multi-task
scenarios.

4. Experiments on Adapted EGTEA Dataset

Adapted EGTEA Dataset. To further evaluate our ap-
proach, we adapted the EGTEA dataset [5] for MT-TAS
evaluation. The EGTEA dataset originally contains 86 ego-
centric videos of seven different cooking recipes, includ-
ing BaconAndEggs, Cheeseburger, ContinentalBreakfast,
GreekSalad, PastaSalad, Pizza, and TurkeySandwich. We
manually split each recipe video into two “tasks” by di-
viding 44 videos into two halves, with each half contain-

ing steps exclusively from one “task”, effectively creating
single-task videos. The remaining 42 videos include steps
from two “tasks” presented in an interleaved manner, repre-
senting multi-task videos. As a result, we obtained a dataset
comprising 88 single-task videos and 42 multi-task videos.
This dataset contains 50 action classes and around 28 hours
of video in total. We use the single-task videos for training
and the multi-task videos for testing, aligning with the setup
of our primary experiments.
MT-TAS Performance. Table 4 shows the results of both
offline (using MSTCN [3] as the base model) and online
(using ProTAS [7] as the base model) MT-TAS on the
adapted EGTEA dataset. We observe that incorporating
our proposed modules leads to progressive improvements
in both offline and online MT-TAS settings. Specifically,
in the offline setting, the accuracy increases from 82.6% in
the baseline to 84.4% when all modules are applied, and the
F1@50 score improves by 3.8%. In the online setting, the
accuracy improves from 79.9% to 83.7%, with the F1@50
score increasing by 4.6%. Although the improvements on
the adapted EGTEA dataset are not as remarkable as those
observed on the MEKA dataset, they demonstrate that our
modules effectively enhance performance even when the
dataset does not exhibit extensive task interleaving. The
smaller gains can be attributed to the nature of the adapted
EGTEA dataset, where interleaving between “tasks” is less
common, and the object layouts in single-task and multi-
task videos are more similar. Nonetheless, the consistent
improvements confirm the general applicability of our ap-
proach across different datasets and settings.

5. Complexity and Limitations
Complexity. Our proposed framework introduces special-
ized modules, including MSB, SBL, FBFC, and FAAR, that
significantly enhance the model’s adaptability to multi-task
scenarios in temporal action segmentation. The MSB mod-
ule synthesizes training data by blending single-task videos
with pre-generated LLM queries, minimizing runtime im-
pact as queries are processed offline. SBL and FBFC en-
hance feature representation through additional neural net-
work layers, which may increase model size and computa-
tion cost during training. Notably, during inference, these
modules (MSB, SBL, and FBFC) are inactive, so they do
not add any computational complexity. Only the FAAR
module remains active during inference, focusing on detect-
ing action-relevant objects and extracting foreground fea-
tures. Our ablation studies demonstrate that by limiting K,
the number of top predicted actions considered, to 3, we
effectively balance accuracy and inference efficiency.
Limitations and Future Work. Our framework effec-
tively addresses critical challenges in multi-task tempo-
ral action segmentation, laying a strong foundation for fu-
ture advancements in the field. Due to the lack of exist-



MSB SBL FBFC FAAR
Offline MT-TAS [3] Online MT-TAS [7]

Acc Acc-bg Edit F1@{10,25,50} Acc Acc-bg Edit F1@{10,25,50}

baseline 82.6 36.5 20.5 28.5 23.7 14.4 79.9 34.2 18.7 20.8 15.4 8.0

X 83.1 37.4 24.2 32.6 27.5 16.2 81.5 33.2 23.9 23.4 18.0 8.5
X X 82.8 39.5 25.8 33.8 27.5 16.4 82.4 35.8 24.1 23.1 18.5 9.1
X X X 82.9 40.1 26.0 34.1 27.7 17.1 82.9 40.2 24.5 24.8 20.0 11.5
X X X X 84.4 44.2 28.8 35.5 30.3 18.2 83.7 46.0 27.4 26.1 21.0 12.6

Table 4. Comparison of offline and online multi-task temporal action segmentation performance on the Adapted EGTEA dataset.

Figure 4. Qualitative visualization on multi-task temporal action segmentation results of multiple methods.

ing datasets for MT-TAS, we validated our approach pri-
marily on our collected MEKA dataset and an auxiliary
adapted EGTEA dataset. While these datasets provide a
solid evaluation foundation on kitchen activities, extending
our method to diverse domains like sports or industrial tasks
would demonstrate broader generalizability and adaptabil-
ity. Besides, our use of LLMs for deciding task switches
and identifying relevant objects showcases the integration

of advanced language models in action segmentation. In
scenarios where LLMs are unavailable, alternative methods
such as utilizing multi-task transcripts, leveraging knowl-
edge bases, or employing action description parsing can
be explored to achieve similar outcomes. Additionally, the
DIVE approach benefits from the ongoing advancements in
open-vocabulary object detection models. As these models
continue to improve in efficiency and accuracy, we antici-
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Figure 5. Visualization of our model’s predictions on multi-task temporal action segmentation videos.

pate corresponding enhancements in our framework’s per-
formance. Lastly, while our domain adaptation strategy
demonstrates performance improvements, our experiments
show that there remains room for further improvement. Fu-
ture work could explore more sophisticated adaptation tech-
niques, such as action-level or video-level adaptation, to
further mitigate the discrepancies between single-task and
multi-task videos.
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