UNICL-SAM: Uncertainty-Driven In-Context Segmentation
with Part Prototype Discovery

Supplementary Material

QPG Hyperparameters

UGGN Hyperparameters Number of query tokens 50
Hidden size 256 Hidden size 256
Hidden dropout prob 0.5 Encoder hidden size 256
Variance gamma 1 Attention heads 16
Number of samples 1 Hidden dropout prob 0.1
Graph sparse ratior 0.5 Attention dropout prob 0.1
Uncertainty gate le-4 Layer norm epsilon le-12

Hidden activation gelu

(a) Hyperparameters of
UGGN.

(b) Hyperparameters of QPG.

Loss Hyperparameters

Abce 2
Acl'Lcc 1
/\f;; L 1
Ak Se-4
ALEd Se-4
Ap 0.5

(c) Hyperparameters of loss.

Table Al. Hyperparameters for our UNICL-SAM.

A. Additional Implementation Details

In this section, we provide additional details of some pro-
posed modules/operations and training settings.

A.1. Multi-scale feature adapter.

With a VitDet [1] style simple feature pyramid (SF'P)
architecture, we generate feature maps at scales
S = {%71,2,4} by applying convolutions with strides
{3,1,2,4}:

{F2,F' F* F'} = SFP(F), F € {F, . F,} (1)

Then with the multi-scale features, we apply upsampling
and adaptive max pooling transformations to map them to
the vanilla feature map size H, W. Subsequently, we ag-
gregate the features in the spatial domain through summa-
tion followed by average pooling. A non-local mapping
(Nonlocal) is then employed to produce the final feature
map F:

S
| ,
F =— § F* F° ¢ {F2,F' F* F'}
S 2

’

F =Nonlocal(F )

A.2. Correspondence extraction.

With the masked reference feature F,.,, and target image
feature Fy, the patch-level similarity Corr € RHW>HW jg

calculated as follows:

F'rm ) Ft

Corr= —-——
”FrmH ' HFfH

3)

Then, we calculate the pseudo mask yP**“® by retaining
the maximum similarity at each patch and normalizing it
to the [0, 1] range using min-max normalization. Benefit-
ing from the great generalization capabilities of DINOv2
and our multi-scale feature adapter module, as illustrated in
Figure 1, the correspondence map shows a high correlation
with the ideal segmentation label.

A.3. Query-based prompt generator.

The query-based prompt generator (QPG) is a simple
decoder-style transformer architecture. For each layer,
we first apply self-attention and then follow with cross-
attention to interact with in-context instructions.

A 4. Training pipeline.

We simply employ uniform dataset-level sampling without
adjusting the dataset ratios. Data augmentations are applied
to reference and target images, including random resizing
and cropping. More details on the model hyperparameters
are shown in Table A1.

B. Robustness Simulation Tests Details

In this section, we provide a detailed description of the ro-
bustness simulation tests we constructed. To comprehen-
sively evaluate the model on the degradation and domain
shifts that may be encountered in various real-world sce-
narios, we designed 6 categories comprising a total of 18
image transformations, accompanied by 3 label transforma-
tions and varying degradation levels for each transforma-
tion. The specific settings are outlined in Table B2. For
transformations with multiple parameters, each combina-
tion will be systematically explored. To mitigate evalua-
tion costs, we apply various transformations while fixing the
seed on 1,500 images randomly sampled from the COCO
test split for all transformations.

We specifically designate the “Generation” type because
this process does not involve transforming the original refer-
ence examples. Instead, we utilize the category names from
COCO to construct input prompts such as A good photo
of [c].”, where [c] denotes a specific category. Utilizing the
SDv2.0 model [6], we generate 64 images for each cate-
gory based on the constructed prompts. Subsequently, we



Type Transformation Argument Value
Support Image
Brightness 0.5, 1.5
. Contrast 0.5,1.5
Color jitter )
Saturation 0.5, 1.5
Color
Hue 0.1,0.3,0.5
Gray - -
Light Lightness 03,0.7,1.3,1.7
Gaussian blur Kernel size 7,11, 15
Motion blur Blur limit 5,9,15
Blurness
Mean shift blur Color radius 1, 10, 50
Sharpness Factor 5,10, 15
Jpeg compression  Quality 5,10, 20
Posterize Bit 3,2, 1

Compression

Solarize Threshold 0, 64, 128, 192, 256
Gaussian noise Var limit 5e3, led, 5e4
Horizontal flip - -

Space Vertical flip - -
Rotate Degree 45,90, 180
Cartoon - -

Domain shift ~ Sobel Kernel size 3

Generation* - -

Support Label
Bbox - -
Deformation  Erode

Kernel size 5

Dilate Kernel size 5

Table B2. A detailed list of the transformation arguments and pa-
rameters for the robustness simulation tests is presented. The val-
ues further to the right indicate a greater impact.

apply the label generation method of X-paste [11] to create
binary segmentation labels corresponding to each generated
image. We then sample examples from the sets as usual.

C. Additional Ablations

In this section, we conduct more thorough ablation experi-
ments to illustrate the effectiveness of our method.

C.1. Ablations on training data.

We further investigate the effectiveness of combining di-
verse datasets under our joint in-context training frame-
work. As illustrated in line 1 of Table C3, the model demon-
strates strong performance even when trained exclusively
on a subset of COCO comprising approximately 35k im-
ages. We attribute this to effective architectural design. Fur-
ther training on the full COCO can provide further improve-
ment. We validate that incorporating more diverse seman-
tic segmentation data, such as ADE20K, helps improve the
model on out-of-domain FSS1000 and LVIS-92° tests.

C.2. Ablations on model trainable parameters.

We construct ablation experiments to analyze the impact
of the proposed modules on trainable parameters and per-

Training Data | COCO-20°  FSS-1000 LVIS-92°
COCO-s 74.6 81.7 29.9
COCO 713 82.4 32.0
+ ADE20k 77.8 84.0 34.1

Table C3. Ablation of training data.

MFA UGGN Tl‘;z‘r‘:i’ie COCO-20°  FSS-1000 LVIS-92!
v v 55.4M 773 82.4 32.0
v X 52.5M 77.4 81.2 29.8
X v 9.8M 77.0 81.3 30.2
X X 7.8M 75.4 80.7 28.9

Table C4. Ablations of model trainable parameters.

formance, with results presented in Table C4. In this ab-
lation experiment, we utilized the entire COCO dataset to
train the model and observe the resulting changes in perfor-
mance. While multi-scale features enhance model perfor-
mance, they also introduce significant computational over-
head (approximately 45M trainable parameters when com-
paring lines 2 and 4). It is noteworthy that the difference in
parameters between lines 1 and 3 is slightly greater than that
between lines 2 and 4. This discrepancy can be attributed
to changes in the mapping layer parameters resulting from
the introduction of local prototypes. The model continues
to achieve commendable results even without the multi-
scale structure. We attribute this sustained performance
to the refined visual features generated by the optimiza-
tion strategies afforded by uncertainty modeling and effec-
tive part prototype guidance. It is worth mentioning that
UGGN only requires about 2M parameters, demonstrating
its lightweight and efficient design. Therefore, we recom-
mend utilizing the full version for scenarios that demand
superior performance; however, the lightweight UGGN is
sufficient for less demanding applications.

D. Additional Quantitative Analysis

D.1. Comparisons on robustness simulation testing.

Here we provide a detailed comparison of robustness test-
ing. As illustrated in Table D5, our UNICL-SAM signifi-
cantly outperforms previous approaches across all transfor-
mations. This demonstrates the effectiveness and robust-
ness of our proposed framework, which is well-equipped to
handle the diverse examples that may arise in practical ap-
plications.

In addition, we made several intriguing observations. All
approaches exhibited insensitivity to color variations; how-
ever, they demonstrated significant performance degrada-
tion in response to common noise types, such as Gaussian



Type Transformation Matcher SegGPT SINE UNICL-SAM
Clean 41.6 62.1 70.0 79.8
Support Image
Color jitter 40313 54279 692(_0s) 78711
Color Gray 421405 59520 69.1(_09) 78810
Light 40.7(—0.9) 64.6(42.5) 69.7—03 789 0.9
Gaussian blur 39.1(_2.5) 54.5(_7.6) 67.2(_ 2.5 77.6(_2.2)
Blumess Motion blur 40.1(_1.5) 61.8(_0.3) 69.2(_0.8) 77.5_2.3)
Mean shift blur 38.5(—3.1) 61.7_0.4) 68317 78414
Sharpness 38700  586(_ 55 68515 785 ;s
Jpeg compression  38.6(_3.0) 61.0(_2.1) 67.3(_2.7) 77721y
Compression Posterize 37.4(_4.9) 61.1ﬂ 65.9_4.1) 76.4_3 4
Solarize 39.7_1.9) 61.7(_0.4) 69.1(_0.9) 78.7_1.1)
Gaussian noise 20.7(—20.0) 48.5(_13.6) 45.7(—2a3) TLO_gy
Horizontal flip 40.5_1.1) 64.9(42.5) 70.6(40.6) 79.0(_0.5)
Space Vertical flip 35264y 43.8(_1s3) 603862  T40_55
Rotate 384 50 60051 664 s 82 1q)
Cartoon 31.8(_9.5) 59.0(—s.1) 60307 72573
Domain shift  Sobel 352(_6.4) 469159 631609  T49(_a19
Generation* 2105 62001  673(0m  TT6( 20
Support Label
Bbox 264(_15.2) 462(_150) 459(_241) 609.0(_105)
Deformation  Erode 39422y 535086 592108 76.0(_s.s
Dilate 40.5_1.1) 60.2(_1.9) 67.8(_2.2) 79005

Table D5. A comprehensive comparison of the robustness of existing advanced in-context segmentation generalists across various trans-
formations. We highlight the best performance in bold, while indicating minimal performance degradation in underline.

DAVIS 2017 DAVIS 2016

Methods

J&F1  Jt Ft J&F1T JT F1

generalist model

Painter [9] 346 285 408 70.3 69.6 70.9
SegGPT [10] 756 725 786 837 836 83.8
VRP-SAM (8] 64.8 62.1 674 - - -
SINE [3] 770 72.6 813 82.3 814 832
UNICL-SAM 740  69.3 78.6 81.7 76.5 86.8

Table D6. Comparison with state-of-the-art generalist models on
video object segmentation benchmarks. Previous state-of-the-art
results are underlined.

noise. A similar phenomenon was observed with the spatial
transformation of vertical flipping, where SegGPT experi-
enced a substantial decline in performance, potentially in-
dicating underlying issues associated with the MAE frame-
work. Furthermore, domain shift notably affected the per-
formance of all approaches. However, examples generated
based on SD still achieved good performance compared

with real-world ones. This suggests that current state-of-
the-art generative methods can provide high-quality exam-
ples that assist in context segmentation, thereby offering a
user-friendly approach to example provision. Regarding the
impact of example labeling, we found that a simple transfor-
mation involving the bounding rectangle of example masks
significantly influenced performance. This transformation
is commonly encountered in practical applications involv-
ing interactive labeling methods (e.g., bbox is one of SAM’s
prompting types). This finding indicates that existing meth-
ods require further enhancement to effectively adapt to user
interaction scenarios. We hope these analyses will aid fu-
ture research in further evaluating model performance and
implementing targeted improvements.

D.2. Comparisons on video object segmentation
benchmarks.

We further conduct experiments on DAVIS 2016 [4] and
2017 [5] video object segmentation benchmarks. The re-
sults in Table D6 demonstrate UNICL-SAM’s competi-
tive DAVIS benchmark performance. Note that UNICL-



SAM uses fewer training data than SegGPT (trained on 12
datasets) and SINE (trained with large-scale instance seg-
mentation dataset Object365 [7]), highlighting its versatility
and generalization capability.

E. Additional Qualitative Results

This section provides more visualizations of the intermedi-
ate outputs and predictions generated by UNICL-SAM. We
also introduce a comparison with existing solutions to better
analyze.

E.1. Qualitative Results on COCO-20".

To illustrate the great in-context segmentation ability of our
UNICL-SAM, we provide qualitative results on the COCO-
20° benchmark. As illustrated in Figure E1, the model ex-
hibits a robust semantic understanding across diverse sce-
narios. For the examples, it is evident that uncertainty is of-
ten significantly activated at edges and small targets, while
the clustered masks reveal specific local semantics.

We would like to emphasize the capabilities of UNICL-
SAM with respect to target images. The pseudo masks gen-
erated based on the correspondence map often contain sig-
nificant noise, particularly for small targets, as observed in
lines (5) to (11). Following our uncertainty quantization
stage, the estimated uncertainty maps indicate high activa-
tion in the noisy irrelevant areas. Notably, after implement-
ing our feature optimization strategy, the pseudo masks ef-
fectively reduce significant noise, resulting in a more pre-
cise delineation of regions of interest.

This enhancement allows the model to generate precise
segmentation predictions despite substantial size discrepan-
cies between examples and targets (e.g., lines (1), (2), and
(8) to (11)). It effectively addresses challenges posed by oc-
cluded objects (e.g., lines (1) and (4)) and varying lighting
conditions, as illustrated in row (7). Furthermore, the model
demonstrates robustness in handling objects exhibiting dif-
ferent states, as seen in rows (3) and (9). Even for targets
exhibiting similar interferences, such as those in line (2),
our model successfully distinguishes and segments the cor-
rect target. This analysis underscores both the superiority
of the proposed UNICL-SAM framework and the effective-
ness of the optimization strategies employed.

E.2. Visualization comparisons.

We also perform a visual comparison with existing ad-
vanced context segmentation models, as shown in Fig-
ure E2. Our baseline exhibits notable positioning errors and
fragmented masks, as illustrated in lines (1), (3), (6), and
(7). The introduction of the uncertainty modeling and corre-
spondence feature optimization strategy and part prototypes
enables UNICL-SAM to effectively manage these complex
segmentation scenarios. Among all the evaluated models,

SINE [3] demonstrates the highest performance, success-
fully segmenting nearly all the desired targets. However, it
is still susceptible to issues of over-segmentation and inade-
quate edge refinement. Conversely, SegGPT [10] frequently
fails to produce segmentation results, while Matcher [2] of-
ten misidentifies the target areas. Visual comparisons fur-
ther underscore the superiority of our model, which adeptly
addresses segmentation challenges that previous methods
struggle to resolve.

E.3. Qualitative results on robustness tests.

We present qualitative results from the robustness tests we
conducted. As illustrated in Figure E3, we randomly se-
lected a variety of transformations that encompass six major
categories we designed. The results indicate that UNICL-
SAM performs segmentation effectively, even in the pres-
ence of significant size discrepancies and complex light-
ing conditions. This capability extends to managing ex-
treme transformations, including solarization, vertical flip-
ping, Sobel filtering, and bounding box labeling. Only the
semantic ambiguity arising from bounding box annotations
may affect the model performance, as indicated in the final
line. We attribute this success to the effective architecture
and feature optimization strategies proposed in this study.
These findings unequivocally demonstrate the robustness of
UNICL-SAM and highlight its potential for application in
real-world scenarios.

F. Discussions

In this paper, we introduce UNICL-SAM, which exhibits
superior performance and robustness, with its core compo-
nent, UGGN, requiring only a minimal number of parame-
ters (approximately 2M). Notably, we have fixed the param-
eters of the pre-trained SAM, enabling the integration of ex-
isting SAM optimization strategies to support a wider range
of applications. Although the performances on video ob-
ject segmentation benchmarks still show room for improve-
ment, we anticipate the potential of our UNICL-SAM to be
applied in real-world applications due to its strong robust-
ness.
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Figure E1. Visualization of one-shot semantic segmentation. The blue area denotes the mask for in-context prompts, the red area repre-
sents the ground-truth mask, and the area indicates the model’s predictions. (If there is no additional explanation, the subsequent
visualizations will follow this setting.) We also performed a detailed visualization of the network’s intermediate outputs, including the
pseudo masks, uncertainty maps, and clustered masks. To better observe the area of interest, we use red boxes [] to mark the corresponding
position. Please zoom in for a better view.



Support example  Ground truth  Ground truth mask UNICL-SAM baseline

ABBEY |8 ABBEY |8 ABBEY
ROAD NW8 i ROAD NW8 i ROAD NW8
: I [ oo e Jee oo s Jag

HEREEERE/E |

Figure E2. Visualization comparisons between advanced in-context segmentation generalists. Our UNICL-SAM effectively addresses
complex and challenging scenarios that previous approaches have struggled to manage, demonstrating robust in-context semantic segmen-
tation capabilities. Please zoom in for a better view.
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Figure E3. Qualitative results on robustness tests. The corresponding transformation type is indicated on the left. UNICL-SAM consis-
tently achieves accurate segmentation results across various types of degradation and domain shift variations that we designed for testing,
demonstrating a notable degree of robustness. Please zoom in for a better view.



