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Supplementary Material

In this supplementary material, we first present an
overview of our parallel local SDF detection algorithm in
Suppl. 1, and then provide additional details regarding the
training process in Suppl. 2, followed by the detailed exper-
imental settings in Suppl. 3 and finally, more experimental
results in Suppl. 4.

1. Local SDF detection algorithm

Algorithm 1 Parallel local SDF detection for sampled
points.

Input: Fl: all local SDFs; B: observation range; p: sam-
pled points with number n; k: threshold for the number
of detected local SDFs.

Output: H[n][k]: detected results.
1: Fl

c ←− SELECTCANDIDATES(Fl, B)
2: V ←− BUILDGRID(B)
3: key ←− ASIGNKEYS(Fl

c, V )
4: Fl

cs ←− SORTBYKEYS(Fl
c, key)

5: R←− INDENTIFYVOXELRANGES(Fl
cs, V )

6: for all p in B do
7: iv ←− GETVOXELID(p, V )
8: H[i][1 : k]←− DETECTINVOXEL(Fl

cs, V,R,p, iv)
9: end for

10: return H[n][k]

2. Training details

In the training process, we derive the gradients of Eq. 2
in Sec. 3.1 of the main body of the paper and implement
them with CUDA to enable more efficient training. The
derivations are as follows:
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converts a 3D vector into the corresponding antisymmetric
matrix. Jl denotes the left-multiplication BCH approxima-
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where α is the norm of rj . Thus, the derivative of SDF value
S with respect to the geometric parameters {xj , rj , sj} can
be easily computed by chain rule:
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can be derived automatically by Pytorch. The
analytical normal np at the sampled point p is:
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3. Detailed experimental settings
In this section, we describe the detailed experimental set-

tings, including datasets, parameter settings, baselines, and
metrics.

3.1. Datasets
We evaluate our approach on the Matterport3D dataset

[1], the Newer College dataset [8], a self-collected street-
level dataset, and the KITTI-360 dataset [5].
• The Matterport3D dataset is a large-scale indoor RGB-

D dataset, where ground truth meshes and frame poses
are available. We randomly select 5 scenes for eval-
uation. Their scene IDs are ”1LXtFkjw3qL”, ”Jm-
bYfDe2QKZ”, ”ur6pFq6Qu1A”, ”Vt2qJdWjCF2”, and
”VzqfbhrpDEA”, respectively.

• The Newer College dataset is a hand-carried LiDAR
dataset, collected at Oxford University. We evaluate our
method in the Quad and Math Institute scenes, where the
ground truth point clouds and frame poses are provided.

• Due to the limited availability of outdoor large-scale
datasets for 3D mapping evaluation, we construct a street-
level dataset. The dataset includes 5 sequences, namely
real-1, real-2, real-3, real-4, and real-5, respectively.
They are collected by a handheld camera-LiDAR-IMU



integrated device in street scenes. The device is equipped
with an IMU, a monocular camera, and a Velodyne VLP-
16 LiDAR. The first four sequences are captured along
line-shaped streets with lengths of about 230m, 235m,
225m, and 410m, respectively. The last sequence is col-
lected in a small park with an area of about 370m×100m,
and the data collection trajectory is a ring with a length of
about 870m. A NavVis VLX 3 scanner is used to cap-
ture the ground truth point cloud of each sequence with
millimeter-level accuracy for reconstruction evaluation 1.
Ground truth frame poses are generated by aligning Li-
DAR frames with the ground truth point clouds. To pro-
mote further research in large-scale 3D mapping, we have
made the dataset publicly available at the Science Data
Bank.

• The KITTI-360 dataset is a kilometer-level dataset, which
records several suburbs of Karlsruhe, Germany, corre-
sponding to over 100k laser scans in a driving distance
of 73.7km. Accurate vehicle poses are available. Since
no ground truth meshes or point clouds are provided, we
only perform qualitative experiments on this dataset.

3.2. Parameter settings
Our basis SDF is parameterized by a tiny MLP with 3

layers, each including 64 neural nodes. Its limited radius m
is set to 3. In the initialization process, the voxel size sv for
voxel downsampling is set to 0.1, 0.3, 0.5, and 0.5 for the
Matterport3D dataset, the Newer College dataset, the street-
level dataset, and the KITTI-360 dataset, respectively. In
our parallel local SDF detection algorithm, the threshold k
for the number of detected local SDFs is set to 12. In the
prune-ane-expand step, the distance threshold dth is set to
0.12 and 0.2 for indoor and outdoor scenes, respectively.
the gradient threshold xth is set to 2 × 10−4, and the scale
threshold sth is set to 0.8sv . The hyperparameter λ in the
loss function was set to 0.02. All experiments are conducted
on a desktop with the configuration of Ubuntu 18.04 / Intel
Xeon(R)W-2135 CPU / NVIDIA GeForce RTX4090 GPU.
For each scene, we train our model using Pytorch for a de-
fault of 15000 iterations (about 20 minutes). For the scenes
in the KITTI-360 dataset, the model is trained for 50000
iterations. The prune-and-expand strategy is executed af-
ter 1000 iterations and every 200 iterations. We adopt the
ADAM optimizer for model training. The initial learning
rate is 5 × 10−3 and decreases exponentially to 0.1 times
the original value.

3.3. Baselines
We compare our approach with a wide range of 3D map-

ping methods, including VDB-Fusion [9], SPSR [4], NKSR
[3], SHINE-Mapping [11], and PIN-SLAM [7]. A brief de-
scription of these methods is as follows.

1https://www.navvis.com/vlx-3

• VDB-Fusion is a TSDF fusion-based method, which rep-
resents a scene as a truncated signed distance function
(TSDF) using a discrete VDB [6] grid.

• SPSR fits an indicator field based on B-spline basis func-
tions anchored at nodes of an octree.

• NKSR models scenes using neural kernels constructed
from learnable latent features. In our experiments, we
adopt the official kitchen-sink-model.

• SHINE-Mapping implicitly represents a scene as an SDF
using a hierarchical feature grid and a small multi-layer
perceptron (MLP). In our experiments, we perform the
batch mapping mode.

• PIN-SLAM models scenes with a set of neural points and
an MLP decoder. The approach is a simultaneous local-
ization and mapping (SLAM) system. In our experiments,
we deactivate its pose estimation module and use ground
truth poses for incremental mapping. We also attempted
to adapt PIN-SLAM for batch mapping, but it was un-
successful. The issue arises in large-scale scenes, where
its hash indexing results in numerous conflicts, leading to
degraded performance.
For SPSR and NKSR, we estimate point normals by per-

forming the principal component analysis (PCA) on neigh-
bor points and then correcting these normals toward the data
acquisition sensor, the same as the procedure used for rota-
tion parameter initialization of local SDFs, described in Sec.
3.1 of the main body of the paper.

3.4. Metrics

We adopt the commonly used metrics named accuracy
(Acc.) in centimeter (cm), completeness (Comp.) in cm,
precision (Prec.) in percent (%), recall in %, and F-score
in %, where Prec., recall and F-score are presented with
a 10cm error threshold in indoor scenes and a 20cm error
threshold in outdoor scenes. We also evaluate the mem-
ory consumption for map representation (MC) in megabytes
(M ). All data stored in memory is counted as the float
type. Below, we outline the methodology for calculating the
memory consumption for map representations across differ-
ent methods.
• VDB-Fusion: we account for the number of nodes of the

VDB data structure, where each node is viewed as a float-
type value. We also consider the SDF values and their
associated weights stored in the leaf nodes.

• SPSR: we count the number of octree nodes, each rep-
resented as float-type data, and account for the weights
of the B-spline basis functions stored in the active multi-
level nodes.

• NKSR: we consider the latent features generated during
the reconstruction process, including structure features,
normal features, kernel features, and mask features.

• SHINE-Mapping: we consider the memory usage of the
hierarchical feature grid and the MLP.

https://doi.org/10.57760/sciencedb.ai.00005
https://doi.org/10.57760/sciencedb.ai.00005


• PIN-SLAM: we account for the latent features associated
with neural points and their geometric parameters (posi-
tion and rotation), as well as the MLP decoder.

• Ours: we evaluate the memory consumption of the geo-
metric parameters of local SDFs and the tiny MLP repre-
senting the SDF basis.

4. More experimental results
4.1. Ablation study

Local SDF. We compare with some other forms of lo-
cal SDF [2, 10]. Let’s ignore the latent features. Then, the
formulas of [2, 10] and ours can be generally written as:
sdf(x) =

∑
i∈[N ] φi(x)fϕ(Ti(x)), where x is a sampled

point in the world coordinate system, Ti(x) is a transforma-
tion of x into the local coordinate system, φi(x) is a weight-
ing function, fϕ(Ti(x)) is a local SDF, and fϕ(Ti) is an
MLP-parameterized local basis SDF with the parameters ϕ.
The novelty of our representation lies in a different Ti(x).
In [2], T 1

i (x) = x (Conf.1), and in [10], T 2
i (x) = x − µi

(Conf.2), where µi can be viewed as the position of the local
SDF. In contrast, we also consider the rotation Ri and the
scaling Si of the local SDF, and T 3

i (x) = R−1
i (x−µi)S

−1
i

(Conf.3), which greatly eliminates the dependence on local
latent features. Additionally, we compare with the config-
uration of ”Config3+Latent features”, which can be formu-
lated to sdf(x) =

∑
i∈[N ] φi(x)fϕ(T

3
i (x), hi) with hi de-

noting each latent feature. The reconstruction results are
shown in Fig. 1. Compared to ”Config.1” and ”Config.2”,
our method significantly improves the reconstruction per-
formance. When compared to ”Config3+Latent features”,
ours achieves comparable reconstruction performance with
less memory usage.

Config.1 Config.2

Config.3 (Ours) Config.3+Latent features

Figure 1. Reconstruction results for different forms of local SDF
in the Math Institute scene.

Voxel downsampling. This paper adopts uniform voxel
downsampling to initialize support points. This approach is
easy to implement and efficient, aiding downstream tasks
that require high efficiency. We experiment with non-
uniform downsampling in the Math Institute scene. Specif-
ically, we implement a hybrid voxel data structure that al-
locates smaller voxels in geometrically complex areas and
larger voxels in geometrically simple areas. The results,
shown in Tab. 1, indicate a decrease in accuracy for ’non-
uniform’. We believe the main reason is that geometrically
complex areas can contain substantial noise (e.g., dynamic
objects), and allocating more support points in these areas
during the initial training stages may lead to overfitting the
noise.

voxel downsampling Prec. Recall F-Score MC
uniform 82.4 88.5 85.3 8.0

non-uniform 80.6 88.8 84.5 8.0

Table 1. Experimental results of voxel downsampling in the Math
Institute scene.

Thresholds of prune-and-expand strategy. We do
some experiments in the Math Institute scene. The results
are listed in Tab. 2. The default parameters in the paper
are in bold. For the experiments of each threshold, other
thresholds remain default. We can see that the default con-
figuration provides a good balance between reconstruction
quality and memory usage.

dth F-score MC xth F-score MC sth F-score MC
0.05 84.6 2.1 5× 10−5 85.3 10.0 0.06 85.3 8.1
0.1 85.1 4.6 1× 10−4 85.1 8.2 0.15 85.3 8.1
0.2 85.3 8.0 2× 10−4 85.3 8.0 0.24 85.3 8.0
0.3 85.3 9.4 4× 10−4 85.3 8.0 0.36 85.3 8.1

Table 2. Experimental results for different thresholds of the prune-
and-expand strategy in the Math Institute scene.

F-score trend for the voxel size sv . We do some tests
for more parameter settings to show the trend of the F-score,
which initially increases and then decreases (Tab. 3).

sv (m) 2.0 1.5 1.0 0.5 0.3 0.2 0.1
F-score 88.4 90.5 91.7 93.8 92.7 92.1 90.1

Table 3. The reconstruction results with respect to sv .

4.2. Results of comparative experiments
We present more experimental results evaluated on

the Matterport3D dataset, the street-level dataset, and the
KITTI-360 dataset in Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6,
Fig. 7, Fig. 8, Fig. 9, and Fig. 10. These results provide



SHINE-Mapping (F-score: 94.2, MC: 72.2)       Ours (F-score: 97.0, MC: 5.2)                           ground truth mesh

VDB-Fusion (F-score: 91.1, MC: 95.8)         SPSR (F-score: 97.0, MC: 25.2)              NKSR (F-score: 96.9, MC: 103.8) 

Figure 2. Experimental results evaluated in ”JmbYfDe2QKZ” (about 14.9m × 16.8m × 6.4m) in the Matterport3D dataset. The recon-
structed meshes are colored by surface normals.

VDB-Fusion (F-score: 100.0, MC: 93.0)             SPSR (F-score: 94.2, MC: 44.7)                  NKSR (F-score: 94.4, MC: 115.4) 

SHINE-Mapping (F-score: 92.4, MC: 136.8)         Ours (F-score: 94.5, MC: 18.3)                                 ground truth mesh

Figure 3. Experimental results evaluated in ”ur6pFq6Qu1A” (about 33.8m×44.5m×3.6m) in the Matterport3D dataset. The reconstructed
meshes are colored by surface normals.

ample evidence for the extreme compactness and excellent
expressiveness of our 3D representation.
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Figure 10. Experimental results evaluated in the KITTI-360 dataset. Our approach reconstructs more consistent and smoother meshes in a
kilometer-scale scene with less than 1/5 memory consumption for map representation, compared to previous advanced methods.
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