Appendix

A. Proof of Equivalence

We show that the two optimization problems (5) and (7) are
equivalent.

Lemma 5. If p* and f* are the optimal values of the prob-
lems (5) and (7), respectively, then

pr=f" (14)
Let (Z*,h*, R*, t*) be the optimal solution to (7), and A =
R*X +t*1] — Z*, then (Z* + A, h*, R* , t*) is the optimal
solution to (5).

Proof. First, note that the problem (7) is obtained from (5)
by relaxing the hard equality constraint (i.e. z; = Rx; + t).
Therefore,
fF<p. (15)

Second, we are given that (Z*, h*, R*,t*) is the optimal
solution to (7). Let 6; = R*x; +t* — z!. Then,

2i:zi*+<5i:R*mi+t*, (16)
satisfies the equality constraint in (5). Furthermore,

7= SR+ 7 | h9)2= SN fal | RO, A7)
i=1 i=1
which implies that a feasible solution (Z, h*, R*,t*) in (5)
attains the same objective value as f*. Therefore, p* = f*.
Note that

Z=Z"+A, (18)
where A = [61, 02, ... 6,], which equals R* X +¢*1] — Z*.
O

B. Architecture Details

Fig. 7 and Fig. 8 show the detailed architecture of our
CRISP. We use the ViT-S variant of DINOv2 [29] as our
ViT backbone, and keep it frozen during training.

The shape head (Fig. 7) is an MLP with layer normal-
ization and ReLU activations. The network has two hid-
den layers, with hidden dimension equals to 512. We take
the [cls] tokens from layers (3,6,9,12) as well as the
patch tokens from layer 12, concatenate them into a 1920-
dimensional vector and feed them into the shape head. The
output of the shape head is a 2560-dimensional vector,
which we use to condition the shape encoder. The shape
decoder is a FiLM-conditioned MLP with sinusoidal activa-
tions [35, 41]. The network has 4 hidden layers, with hidden
dimension equals to 256. The output of the shape head is
split into 5 512-dimensional vectors, with each vector condi-
tioning one layer of the shape decoder. The final layer is a
linear layer with output dimension equals to 1.

The PNC head (Fig. 8) is based on DPT [37]. We take
tokens from layers (3, 6,9, 12) and pass them independently
through reassemble blocks (see [37] for details). We then
pass the output of each reassemble blocks through fusion

blocks respectively. We use projection as the readout op-
eration and generate features with 256 dimensions. Note
that different from the original DPT Implementation [37],
we use group normalization in the residual convolutional
unit in each of the fusion blocks. We note that this helps
with the stability of the network in training. Lastly, we use
a CNN to produce the PNC output. The CNN has 3 layers,
with the first layer having 256 input channels and 128 output
channels, the second layer having 128 input channels and 32
output channels, and the third layer having 32 input channels
and 3 output channels. The kernel sizes of the first two layers
are 3 x 3, and the kernel size of the third layeris 1 x 1. We
use ReLU as the activation function.

Overall, CRISP uses 709 MB of VRAM with 39.1M
params with our PyTorch implementation. Each shape code
is 2560-dimensional (51.2 KB) — 5.12 MB for 1K objects,
a small amount comparing to the model itself.

C. Shape Degeneracy Check

The linear least square shape corrector (10) informs a degen-
eracy check on the shape estimator, i.e., a check if the shape
estimation is unique or not. From the shape corrector (10)
objective, we have

|F(Z)Dc||”> = ¢"DF(2)"F(Z)De. (19)
It follows that if the matrix F'(Z)TF(Z) is singular then
the shape corrector problem (10) will have multiplicity of so-
lutions. Thus for a given input, we can check the singularity
of the matrix F(Z)TF(Z) to determine shape estimation
uniqueness. Fig. 9 plots the minimum eigenvalue A, of
the matrix F(Z)TF(Z) as a function of keyframes N. In
the example, as the handle of the mug begins to show up, the
minimum eigenvalue A, increases drastically.

D. Training Details

D.1. Supervised Training Details

For PNC, we adopt a loss similar to the soft-L; used in [47]:

Z{ 2z —2])7 /(20),
i — zH (/2]
where (is the threshold to control switching between L,
and quadratic loss. We use ¢ = 0.1 for all datasets.

For shape head and decoder, we adopt a loss similar
to [41]:

Lspr

_m

My Z

1€Q0,|Q0|=M1

+ 2y

Ms
1€Qe,|Qe|=Mo

73

—_— ® i h)||—1 22

tan 2 Wefa@iwli=1 @2
1€QoUN,

|zi — 2f| < ¢

7 — 22| > ¢ @0

[fa(@i | h) = fa(zi | R)"[(1)

¢ (fa(z | h)) de

]

(x,y,2)

[Linear, 1920x512 | 4

DINOv2

—»| FilM Linear, 3x256 |
512

FilM Linear, 256x256 |

{ [Linear, 512x512 | | vy
| T
o Dteyemorm |oop@ e
[concat] [Linear, 2561 |
Layer 12 I Linear, 512x2560 I SéF
2560
: I I |
Backbone Shape Head Shape Decoder

Figure 7. Diagram of our architecture for CRISP’s shape head and shape decoder.

3

DINOv2

Layer 3 |-—-[Reassemble |—»| Fusion |
Layer 6 |~—-[Reassemble }—>| Fus‘ion I
Layer 9 I»—»I Reassemble H Fus‘ion I
Layer 12 I»—’[Reassemble }—-| Fus‘ion |

PNC

Backbone

PNC Head

Figure 8. Diagram of our architecture for CRISP’s PNC head.

e
...lu.“
-3 ____.._“.ul-
E 10--
~<)
1064 o Object Label
e 0bj_000014
0 20 40 60 N

N=1 N=20 N=75
Figure 9. The minimum eigenvalue of the matrix F'(Z)" F(Z) as
a function of keyframes N. Each keyframe captures the mug from
a different viewing angle. F'(Z) is computed using the estimated
PNC Z, aggregated over all keyframes till V.

where 1(x) = exp(—a- |®(x)]) and o = 100, €y is a set of
points sampled on the shape manifold, equivalent to the zero-
level set of SDF (with size M) and (), is the set of points
sampled outside the shape manifold, but inside the domain
in which we want to reconstruct the SDF values (with size
My). The first term utilizes supervision directly on the SDF
values. The second term penalizes off-manifold points to
have close-to-zero SDF values. The last term in (22) is the
Eikonal regularization term where we ensure the norm of
spatial gradients to be 1 almost everywhere in €2. 1, 2, and
73 are hyperparameters. We compute the ground truth SDF
values using 1ibigl”.

Zhttps://github.com/libigl/libigl

The overall loss used is the following:
Liotat = aLpne + BLspr (23)
where « and (3 are hyperparameters.

YCBYV Dataset For the YCBYV dataset, we train two su-
pervised models: CRISP-Syn and CRISP-Real. For
CRISP-Syn, we train using synthetic rendered images of
the YCBV objects using BlenderProc [9]. We generate a
total of 4200 images, with 200 images per object. We use
a=5x10%8=0.1,7 =3 x 103, v5 = 2 x 102, and
3 = 50. We train CRISP-Syn with an Adam optimizer
and learning rate of 3 x 10~ for 500 epochs. We use a batch
size of 16 and weight decay of 10~°.

For CRISP-Real, we train with the provided real-world
train set images. We use & = 5 X 103, 8 =0.1, Y1 = 3X 103,
72 = 2 x 102, and 3 = 50. We train CRISP-Real with
an Adam optimizer with a learning rate of 3 x 10~ for 50
epochs, We use a batch size of 10 and weight decay of 107°.

SPE3R Dataset We train CRISP on the train set of
SPE3R. We use an Adam optimizer with a learning rate of
10~4, weight decay of 1075, a batch size of 16 and for 100
epochs. We use a cosine annealing scheduler with restarts
per 4000 iterations and a multiplication factor of 2. We use
a=50,=1,v =3 X 103,72 =2 x 102, and v3 = 50.

NOCS Dataset We train CRISP on the train sets of CAM-
ERA and REAL275. We use an Adam optimizer with a
learning rate of 10~%, weight decay of 107, a batch size of

16 and for 50 epochs. We use a cosine annealing scheduler
with restarts per 4000 iterations and no multiplication factor.
Weuse a = 50, B = 1,71 = 3 x 103, 79 = 2 x 102, and
Y3 = 50.

D.2. Self-Training Details

Correction For self-training, we use Alg. | and Alg. 2.
There are two main components to both Alg. | and Alg. 2:
the solver for Z (Line 2 in Alg. | and Alg. 2) and the solver
for h (Line 3 in Alg. 1 and Alg. 2).

For the gradient descent solver for Z in both Alg. | and
Alg. 2, we use a step size of 1 x 1072 and a maximum
number of iterations of 50 for all datasets.

For the solver for h in Alg. 1, we use projected gradi-
ent descent as described in Section 4.1 with a step size of
1 x 10~2 with a maximum number of iterations of 25 for
all datasets. For the solver for h in Alg. 2 on the YCBV
dataset, we additionally enforce h to be a one-hot vector. In
addition, as described in Remark 3, we store Z in a buffer
from multiple views. The buffer has a maximum size of 50
frames.

Certification We use (12) as a boolean indicator function
to generate pseudo-labels. For the YCBV dataset, we use
e=1x10"2 and p = 0.98. For the SPE3R dataset, we use
e=2x10"2and p = 0.97.

Self-Training We use (13) for the loss function for self-
training. We use two separate stochastic gradient descent
optimizers for the shape head and PNC head. For the shape
head, we use a learning rate of 4 X 10~* for YCBV and
3 x 10~ for SPE3R. For the PNC head, we use a learning
rate of 3 x 10~* for both YCBV and SPE3R. We use a
weight decay of 10~° for both shape head and PNC head for
all datasets. We use a batch size of 3 for the YCBV dataset
and 10 for the SPE3R dataset.

E. Additional Results

Figure 10. Two sample images from our YCBV synthetic dataset.

Similar to Section 6, for tables, we use bold fonts for the
best results and color the top three results with =, - and
respectively. For tables fewer than three entries, we label
only the top entry with = and bold font.

=
=}

o
©

o
)

Cumulative Distribution of Chamfer Distances

0.41 CRISP-Real
—— CRISP-Syn
—— CRISP-Syn-ST (LSQ)
0.2 —— CRISP-Syn-ST (PGD)
Shap-E
0.0+ | | , , , ,
0.00 005 010 015 020 025 0.30

Chamfer Distances

Figure 11. Cumulative distribution function of the Chamfer dis-
tances of the reconstructed shapes on the YCBV dataset.

]

5 1.0

O

(7]

K

n 0.8

a

<

Y

5 05| /]

< 0.6 7 CRISP-Real

'g J’ —— CRISP-Syn

§0.4 | —— CRISP-Syn-ST (LSQ)
.g | 1l —— CRISP-Syn-ST (PGD)
o —— CosyPose

-% 0.2 BundleSDF

= —— GDRNet++

g

O

00 0.01 0.02 0.03 0.04 0.05 0.06
ADD-S Scores

Figure 12. Cumulative distribution function of the ADD-S scores
on the YCBYV dataset.

E.1. YCBYV Dataset

Fig. 10 shows two sample images from our synthetic
dataset. Fig. 11 shows the cumulative distribution func-
tion (CDF) curves of Chamfer distance between the recon-
structed shape and the ground truth CAD model. We note
that CRISP—-Real achieves the best performance, with self-
training improving the shape reconstruction performance
of CRISP-Syn. Fig. 12 shows the CDF curves of ADD-S
scores. We note that CRISP—Real again achieves the best
performance, with GDRNet++ achieves a slight performance
edge at low ADD-S scores. Self-training improves the per-
formance of CRISP-Syn, with CRISP-Syn—-ST (LSQ)
slightly outperforming CRISP-Syn—-ST (BCD).

E.2. SPE3R Dataset

Our corrector (Alg. 1) can be used to improve performance
during inference as well, not only for self-training. Tab. 10
shows the performance of CRISP with and without the cor-
rector (Alg. 1). With the corrector, we see improved shape re-
construction performance and pose estimation performance.

€shape (mm) ~L

Methods Bottle Bowl Camera Can Laptop Mug Avg
SPD [44] 3.44 1.21 8.89 1.56 2091 1.02 3.17
SGPA [7] 2.93 0.89 5.51 1.75 1.62 1.12 2.44
CASS [6] 0.75 0.38 0.77 042 3.73 0.32 1.06
RePoNet [53] 1.51 0.76 8.79 1.24 1.01 0.94 237
CRISP 0.55 0.31 0.37 0.18 0.51 0.16 0.35
Table 8. Shape reconstruction results on the NOCS dataset.
mAP
5° 5° 10° 10°
Methods ToUss ToUsg ToUzs 5 cm 10 cm 5 cm 10 cm
NOCS [47] 84.8 78.0 30.1 100 9.8 252 258
) Metric Scale [21] 81.6 68.1 - 5.3 5.5 247 26.5
=2 SPD [44] 81.2 77.3 53.2 214 214 54.1 54.1
g‘ CASS [6] 84.2 77.7 - 235 238 580 583
@‘3 SGPA [7] - 80.1 61.9 396 - 70.7 -
S RePoNet [53] - 81.1 - 404 - 688 -
SSC-6D [34] 83.2 73.0 - 19.6 - 545 562
z -2 DualPoseNet [24] — 76.1 55.2 313 - 604 -
eh é FSD [27] 80.9 77.4 61.9 28.1 344 61.5 72.6
3 %‘3 CRISP 84.2 83.5 70.5 225 237 62.8 64.8
Table 9. Pose estimation results on the NOCS dataset.
Method el el . ADD-S . ADD-S, ADD-S
p : P : Ablations (AUC) 1T (AUC) 1T (AUC) T
Mean Median Mean Median 1 em 2 em 3em
CPEISP 8'33 3};9) 8'%3% 8?;}5 Normalized Z (NOCS) 8 x 10~ 0.036 0.095
+ Corrector g : : . Unnormalized Z (PNC) | 0.22 0.42 0.54

Table 10. Evaluation of CRISP with and without the corrector
(Alg. 1) on the SPE3R dataset.

E.3. NOCS Dataset

Tab. 8 shows the shape reconstruction results on the NOCS
dataset for all categories. CRISP outperforms the baselines
in all categories as well as the average in terms of espqpe.
Tab. 9 shows the pose estimation results on the NOCS dataset.
As noted in Section 6.3, CRISP achieves comparable per-
formance with the state-of-the-art category-agnostic meth-
ods. Note that CRISP’s rotation error performance can be
potentially improved by incorporating more advanced loss
functions such as the symmetry-aware loss used in [47].

E.4. Qualitative Results

We show qualitative results on the YCBV, SPE3R and NOCS
datasets in Fig. 13. Empirically, we observe that shape
reconstruction is better if objects are consistently aligned —
CRISP sometimes confuses the two clamps in YCBV which
are offset by 90°.

E.5. Additional Ablation Experiments

Table 11. Comparing pose estimation performance between normal-
ized Z (NOCS) with PNC for self-training on the YCBV dataset.

Scale Degeneracy. Comparing with NOCS [47], we see
that PNC achieves significantly better pose estimation perfor-
mance through the prevention of scale degeneracy (Tab. 11).
To understand why the scale degeneracy is a problem, con-
sider the pose optimization problem used with NOCS:

(3,R,1) = argminz |sRax; +t — z||>. (24)
(s,R,t) ;4

Assume noiseless depth {x;}, for a given z;, we have
(8, R, t) as the solution to (24). If we scale z; by a fac-
tor of b, we can achieve the same loss for (24) if we let
s=0b3 R=R,and t = bt. In practice, we observe such
phenomenon (see Fig. 14): after self-training, the predicted
z; becomes significantly smaller than the ground truth z;
(Fig. 14a). If we transform the CAD model using the esti-
mated pose, we observe that the transformed CAD model
is much larger than the ground truth CAD model (Fig. 14b).
We note that this might be one of the reasons why prior
works [27, 34] need to keep access to synthetic data during

(c) Qualitative results on the NOCS dataset.

Figure 13. Qualitative results on the YCBYV, SPE3R and NOCS datasets. For each example, we show the input RGB image (top left), masked
RGB image (top right) and reconstructed meshes transformed with estimated transformations (bottom).

self-supervised training.

()

Figure 14. (a) Purple: Z predicted by the PNC head after self-
training if we adopt normalization for Z (equivalent to NOCS [47]),
Black: ground truth CAD model. (b) Blue: ground truth trans-
formed CAD model. Black: depth point cloud. Red: CAD model
transformed using estimated pose with normalized Z.

Use of DINOvV2 as a backbone. We use DINOV2 as the
backbone of CRISP due to its highly generalizable features.
To validate this, we perform an ablation study where we
randomly initialize the backbone weights, while keeping the
same architecture, and train on the synthetic data. We then
test the model performance on the real YCBYV test set, and
comparing that with CRISP—-Syn. We observe that with ran-
domly initialized weights, both the shape reconstruction and
pose estimation performance drastically degrade comparing
to using DINOv2 weights (Table 12).

Ablations ADD-S (AUC) T éshape (AUC) T
2cm Scm
Randomly Initialized 0 0.075
CRISP-Syn (DINOV2) 0.42 0.39

Table 12. Ablation studies on the use of DINOvV2 as a backbone.

Use of h = f.(Z)in (9). Theuse of h = f.(Z) in (9) can
be seen as a way to incorporate the shape encoder’s output
into Alg. 2. We empirically observe that doing so improves
the shape reconstruction performance after self-training (see
Tab. 13).

. €shape €shape €shape
Ablations (AUC) 1T (AUC) T (AUC) T
3cm 5cm 10 cm
Without b = fo.(Z) 021 035 0.55
With h = fo(Z) 0.25 0.43 0.65

Table 13. Comparing shape reconstruction performance between
using and not using h = f¢(Z) in (9) on the YCBV dataset.

Normalization with D. As noted in Section 4.2, we apply
normalization to F' through the use of the diagonal matrix
D. To be more precise, we calculate dy, (the diagonal entries
of D) as the inverse of the diameter of the bounding box for
each f4(- | hy) in (9). Empirically, this improves the shape
reconstruction performance after self-training (see Tab. 14).

. €shape €shape €shape
Ablations (AUC) 1 (AUC) 1 (AUC) 1
3cm 5cm 10 cm
Without normalization 0.23 0.40 0.63
With normalization 0.25 0.43 0.65

Table 14. Comparing shape reconstruction performance between
using and not using D for normalization on the YCBYV dataset.

