Chain of Semantics Programming in 3D Gaussian Splatting Representation for
3D Vision Grounding

Supplementary Material

Our supplement is organized as follows. In section 6, we
provide additional experiments on the ScanRefer dataset.
In section 7, we introduce the training details for the 3DGS
reconstruction. In section 8, we provide some examples to
demonstrate the programming process of our method.

6. ScanRefer Results

We evaluate our proposed method on the ScanRefer dataset,
as shown in Table 9.

Overall Unique Multiple
Methods Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5
SAT [39] 445 30.1 732 50.8 37.6 25.2
MVT [8] 333 40.8 717 66.5 319 253
ViL3DRel [9] 479 377 81.6 68.6 40.3 30.7
3D-VisTA [42] 50.6 45.8 81.6 75.1 43.7 39.1
ZS3DVG [40] 36.4 327 63.8 58.4 27.7 24.6
VLM-Grounder [36] 62.4 532 872 76.6 56.7 47.8
Ours 61.6 55.4 79.8 71.7 54.8 49.2

Table 9. 3D visual grounding results on ScanRefer.

7. Details for 3DGS scene reconstruction train-
ing settings

We use the official 3DGS for reconstruction, and all the
images used are first cropped 12 pixels from the edges of
each image to remove black borders, then resized to 480 x
640. We trained for 7000 iterations, with sh_degree = 3,
position_Ir_init = 0.00016, position_lr_final = 0.0000016,
feature_Ir = 0.0025, opacity_Ir = 0.025, scalingIr =
0.005, self.rotation_Ir = 0.001, percent_dense = 0.01, den-
sification_interval = 100, A\gssim = 0.2 and frame interval =
100. Notably, to align with the masks from the Referlt3D
benchmark, we did not use the densification of 3DGS. Ad-
ditionally, our method only uses image and pose informa-
tion without utilizing depth information.

8. Examples for the programming process of

our method
Frame Tnterval Training Time Training Time LI Loss PSNR L1 Loss PSNR Model Size
(7k iter) (30k iter) (Tkiter) (7kiter) (30kiter) (30k iter) (7k/30k iter)
10 2:34 - 0.054 19.16 - - 273MB/ -
20 2:38 18:29 0.047 19.98 0.038 20.92 279MB / 545MB
100 2:27 17:14 0.029 23.17 0.016 29.61 348MB / 611MB
200 2:38 16:50 0.016 31.27 0.011 36.47 347MB / 537TMB

Table 10. Frame Interval Analysis Results

Our method finally locates objects through program-
ming, making the reasoning process relatively transparent

Utterance: Choose the table that sits against the wall.

import numpy as np

Define objects based on the input data

objects = {

'2': {'instance_label": 'table’, ‘color": [0.37, 0.34, 0.31], 'center": [4.62, 3.53, 0.5], 'size": [1.47,
3.56, 0.86]},

14" {'instance_label": 'wall', 'color": [0.61, 0.56, 0.53], 'center": [6.22, 6.76, 1.21], 'size": [0.33,
0.93, 2.33]},

'16": {'instance_label': ‘wall', ‘color': [0.69, 0.66, 0.61], 'center": [4.64, 6.85, 1.25], 'size": [3.2,
0.35, 2.38]},

17" {'instance_label": 'table’, 'color": [0.45, 0.36, 0.28], 'center': [4.94, 6.68, 0.51], 'size": [1.67,
0.43, 0.85]},

'21": {!instance_label": ‘wall', ‘color': [0.42, 0.38, 0.34], 'center: [2.2, 3.69, 1.68], 'size": [0.42,
4.81,1.68]},

'29" {'instance_label": ‘wall', 'color": [0.42, 0.38, 0.33], 'center": [4.1, 0.21, 1.34], 'size": [3.13,
0.2, 2.53]}

}

Find the table that sits against the wall
selected_table_id = None

selected_wall_id = None

for object_id, object_data in objects.items():

if object_data['instance_label'] == 'table":
selected_table_id = object
if object_data['instance_label'] == 'wall':

wall_center = np.array(object_data['center'])

wall_position = wall_center[0]

table_center = np.array(object_data['center])

table_position = table_center[0]

Condition to determine if the table is against the wall

if abs(wall_position - table_position) < (object_data['size'][0] + object_data['size"][0]) / 2:
selected_wall_id = object_id

output_object_id = selected_table_id if selected_wall_id is not None else None

output_object_id

Figure 6. Example (a) for our method.

compared to end-to-end neural networks. In this section, we
provide four examples to demonstrate the reasoning process
of our method in scenarios involving spatial relationships,
distance between two objects, color, and viewpoint-related
information.

Figure 6 illustrates the process of inferring the spatial re-
lationship between a table and a wall and identifying the
ID of a table positioned against a wall based on their spa-
tial coordinates and sizes. Figure 7 presents an example of
reasoning with color information (blue), identifying the pic-
ture beside the blue ping pong table. Figure 8 demonstrates
the process of locating objects by calculating the Euclidean
distances between multiple objects and grounding the bed
closest to the bathroom. Figure 9 demonstrates the reason-

Utterance: The largest picture of a dandelion, closest to the blue ping pong table.

import numpy as np
objects = {

'5": {'instance_label': 'ping pong table', ‘color': [0.36, 0.36, 0.39], ‘center': [4.87, 3.5, 0.59], 'size":
[2.86, 2.68, 0.86]},

'9": {linstance_label': 'table’, 'color': [0.82, 0.71, 0.62], 'center": [4.74, 6.68, 1.1], 'size": [0.75,

0.69, 0.08]},

*10": {'instance_label': 'table’, 'color': [0.4, 0.38, 0.32], ‘center": [1.35, 3.34, 0.47], 'size": [1.16,
1.2,0.76]},

11" {!instance_label': 'table', 'color": [0.44, 0.4, 0.35], 'center": [2.89, 1.2, 0.72], 'size": [0.7, 0.71,
1.03]},

'17": {linstance_label': 'picture’, ‘color": [0.52, 0.47, 0.39], ‘center": [6.89, 3.25, 1.26], 'size": [1.81,
1.67, 1.88]},

'18": {'instance_label": 'picture’, 'color': [0.38, 0.42, 0.33], ‘center": [2.49, 0.78, 1.69)], 'size": [0.57,
0.55, 0.63]},

"19'; {'instance_label': 'picture’, 'color": [0.31, 0.32, 0.26], 'center": [0.53, 2.83, 1.63], 'size": [0.67,
0.63, 0.53]}
}

characteristic = 'largest’

object_label = 'picture’

closest_object = 'ping pong table'

Find the largest picture

possible_pictures = {k: v for k, v in objects.items() if v['instance_label'] == object_label}

Determine the closest picture to the blue ping pong table (object id 5)

ping_pong_table = objects['5']

largest_picture_id = max(possible_pictures.keys(), key=lambda k: possible_pictures[k]['size"][0])
object_id = largest_picture_id

object_id
Figure 7. Example (b) for our method.

ing process when the utterance includes viewpoint-related
information (looking into the room from the door), locating
the circular table on the right from this viewpoint.

9. Ablation Study of 3DGS Training

Frame Interval Analysis. We investigated the im-
pact of training frame interval on the reconstruction of
Scene_00001. With densification_interval at 500, and other
3DGS training parameters held constant, we varied the
frame interval and recorded performance metrics as shown
in Table 10. Training time and model size remained con-
sistent across frame intervals, while L1 loss and PSNR var-
ied significantly. Increasing the frame interval improved L1
loss and PSNR. However, this improvement is deceptive.
Larger frame intervals reduce scene information, resulting
in lower rendering quality despite the improved metrics.
The improved metrics are attributed to model overfitting on
sparser input views, memorizing views rather than learning
a robust 3D representation. Smaller frame intervals yielded
significantly better visual results, exhibiting more detail and
fewer artifacts. Therefore, a smaller frame interval is crucial
for high-quality reconstruction.

Utterance: It is the bed with fewer items on it. Itis also closest to the bathroom.

import numpy as np

objects = {

'20": {'instance_label': 'bed", ‘color": [0.32, 0.26, 0.19], 'center": [3.11, 2.41, 0.8], 'size": [2.48,
2.48,1.51]},

'21": {'instance_label": 'bed', 'color": [0.33, 0.25, 0.19], 'center": [1.34, 3.98, 0.82], 'size": [2.47,
2.52,1.52]},

'35": {'instance_label': 'bathroom vanity', ‘color": [0.58, 0.48, 0.36], ‘center": [6.05, 1.69, 0.87],
'size": [1.23, 1.62, 0.63]}
}

def find_closest_bed(objects):
closest_bed_id = None
closest_distance = float('inf')
bathroom_position = [6.05, 1.69, 0.87] # Center of the bathroom vanity
for obj_id, properties in objects.items():
if properties['instance_label'] == 'bed":
distance = ((properties['center'][0] - bathroom_position[0]) ** 2 +
(properties['center][1] - bathroom_position[1]) ** 2 +
(properties['center’][2] - bathroom_position[2]) ** 2) ** 0.5
if distance < closest_distance:
closest_distance = distance
closest_bed_id = obj_id
return closest_bed_id

object_id = find_closest_bed(objects)
object_id

Figure 8. Example (c) for our method.

Utterance: if looking in the room from the door, the circular table on the right.

import numpy as np
objects = {

15" {'instance_label": 'table’, 'color": [0.67, 0.52, 0.32], 'center": [4.42, 2.53, 0.56], 'size": [1.69,
1.43,0.76]},

'16": {'instance_label": 'table’, ‘color": [0.56, 0.48, 0.4], 'center": [2.88, 3.22, 0.6], 'size": [1.81,
1.57,0.78]},

17" {'instance_label": 'table’, 'color": [0.77, 0.72, 0.64], 'center": [4.56, 6.26, 1.09], 'size": [1.86,

1.88, 0.14]},

18" {'instance_label': 'table', ‘color": [0.48, 0.44, 0.34], 'center": [1.35, 5.26, 0.59], 'size": [1.2,
1.41,0.71]},

19" {'instance_label": 'table’, 'color': [0.72, 0.64, 0.54], 'center": [7.63, 5.23, 1.19], 'size": [1.89,
1.91,0.15]},

'25": {'instance_label': ‘door’, ‘color': [0.26, 0.15, 0.07], ‘center": [5.11, 0.45, 1.12], 'size": [0.85,
0.42, 1.92]}
}

Function to ground the object based on the utterance
Extract the target object and its spatial relationship
object_id = None
for obj_id, obj in objects.items():
if obj['instance_label'] == 'table":
obj_position = np.array(obj[‘center’])
'right' means in positive x-direction
door_position = np.array(objects['25']['center'])
if obj_position[0] > door_position[0]:
object_id = obj_id
break

object_id

Figure 9. Example (d) for our method.

	. ScanRefer Results
	. Details for 3DGS scene reconstruction training settings
	. Examples for the programming process of our method
	. Ablation Study of 3DGS Training

