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A. Algorithm of DIFFLENS

In this section, we present a detailed explanation of the
methodology behind our DIFFLENS. To enhance clarity, we
outline the approach through two algorithms that compre-
hensively illustrate the key steps of DIFFLENS. In the con-
text of the algorithms, “online” refers to performing the pro-
cess during each image generation, while “offline” means
executing it only once beforehand and using the obtained
result directly during generation.

A.1. Dissecting Bias Mechanism
We introduce how to dissect bias mechanism, i.e., disen-
tangling bias features in the sparse semantic space (see
in Sec. 4.1 for more details).

Algorithm 1: DIFFLENS: Dissecting Bias Mecha-
nism

Input: A support set of samples
X = {x1, . . . ,xN}, ⌧ 2 N

1 for j = 1 to N do
2 Extract h = [h1, h2, . . . , hn] from ✏✓(xj)
3 s = [s1, s2, . . . , sm] = �(h) ; // Eq. (3)
4 for i = 1 to m do
5 S(si;X) += S(si;xj) ; // Eq. (6)

6 A = {i1, . . . , i⌧} = arg top⌧{S(si;X) | si 2 s};
Output: A

We denote U-Net [50] as ✏✓(·) that accepts a sample x

as input and we use it to extract hidden representations of
the sample. To dissect bias mechanism, we leverage a sup-
port set of samples X consisting of N samples to identify
bias feature. For each sample, the original hidden state h

of the sample is extracted and transformed into the sparse
semantic space using a k-SAE [35] through Eq. (3). Next,
we localize the features that are related with bias contents
by measuring the influence of these feature using a gradient-
based bias attribution method as Eq. (6). For the calculation
of attribution, we use Riemann approximation to estimate
integral in the score of bias generation to the disentangled
feature si as follows
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where s
0 = [s01, . . . , s

0
m] is a relative baseline of s, q is the

number of discrete steps or partitions used in the Riemann

approximation to estimate the integral, and @Fx(s0+↵(s�
s
0))/@si is the gradient of the bias measure given the input

image x, to the target feature space s. The baseline s0 can
be (i) zero or (ii) a value tailored to a specific input. We use
(i) for unconditional diffusion model P2 [10] and (ii) for
conditional diffusion model Stable Diffusion [49]. Then we
aggregate the attribution scores across all sample and every
time steps. Finally, we set a threshold ⌧ to the pick the top ⌧
features that are highly related with specific bias content.

Note that, this process is required only once for one spe-
cific diffusion model, since the sparse sematic space and the
features are consistent across all time steps during genera-
tion and generalizable within a model. As we utilize the
same k-SAE [50] across all time steps, thereby reducing the
number of parameters, the diffusion step t is not explicitly
represented in Algorithm 1.

A.2. Bias Mitigation

We describe how to intervene in bias features identified
within the latent space of a diffusion model in Algorithm 2.
The process modifies specific elements of the semantic fea-
ture vector s = [s1, s2, . . . , sm] 2 Rm according to a set of
indices A = {i1, . . . , i⌧} specifying the subset of features
in s corresponding to bias attributes to be adjusted.

Algorithm 2: DIFFLENS: Bias Mitigating
Input: A set of feature indexes A = {i1, . . . , i⌧},

hidden state extracted from ✏✓(x)
h = {h1, h2, . . . , hn} 2 Rn, � 2 R

1 s = [s1, s2, . . . , sm] = �(h) ; // Eq. (3)
2 Create s

0 = {s01, s02, . . . , s0m} = s

3 for k = 1 to ⌧ do

4 s0ik =

(
�s0ik (Scaling), or
s0ik + � (Adding)

; // Eq. (7)

5 h = h+Wdec(s0 � s) ; // Eq. (9)
Output: h

To map the intervened features back to the original hid-
den units, instead of directly reconstructing h, we compute
the difference between the intervened sparse semantic space
s
0 and the original space s, facilitating the mapping process.

This approach reduces reliance on the reconstruction effect
of k-SAE [35], as it only modifies the intervened parts while
preserving the rest. We reference for [24] and derive the op-



eration as follows

h = h+ ĥ
0 � ĥ

= h+Wdecs
0 + bpre � (Wdecs+ bpre)

= h+Wdec(s
0 � s)

= h+
⌧X

k=1

(s0ik � sik)fik ,

(9)

where ĥ is the reconstructed hidden space without interven-
tion in Eq. (4), ĥ0 is the mapped back of intervened hidden
state and fi is the ith row of the decoder matrix Wdec. The
resulting update is applied to the hidden state h, effectively
reflecting the feature adjustments within the model’s latent
space.

By intervening on specific bias-related features, the al-
gorithm enables controlled adjustments to the generated
content. We also provide two approaches for intervening,
which are scaling and adding. Since we adopt the same op-
eration (scaling or adding) to hidden states h for all time
steps, the time step t is not explicitly represented in Algo-
rithm 2.

B. Implementation Details
In this section, we provide the details of how we implement
DIFFLENS. To ensure consistency with the baselines used
for comparison, we adopt the DDIM [55] in both diffusion
models (Sec. 5.1) used in our experiment. It modifies the
original reverse process by allowing for non-Markovian up-
dates, which reduces the number of timesteps needed for
sampling without sacrificing image quality. The update rule
for generating xt�1 from xt can be written as

xt�1 =
p
↵t�1 Pt(✏

✓
t (xt)) +Dt(✏

✓
t (xt)) + �tzt, (10)

where ↵t 2 [0, 1], �t � 0,�t 2 R and zt ⇠ N (0, I).
Here, ✏✓t is the predicted noise from the U-Net [50]. The
intermediate terms are defined as:
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↵t
,
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(11)

In this work, based on the finding of interference between
P and D from [32], we focus mainly on Pt, which corre-
sponds to the prediction of the clean image at timestep t.

Additionally, we provide a strategy to intervene in the
identified bias features for different classes within an at-
tribute. This approach supports both general bias mitiga-
tion and prompt-specific bias mitigation. For attributes with
more than two classes (e.g., age or race), we intervene in
the features of one class with a uniform probability p = 1

k ,
where k is the number of classes, while keeping the features

of the remaining classes unchanged (� = 1.0 for scaling or �
= 0.0 for adding in Sec. 4.3). For instance, in mitigating age
bias, after identifying feature indices for “young”, “adult”
and “old”, we intervene in the features of one of these three
classes with a probability p = 1

3 , while leaving the features
of the other classes unchanged within a batch of samples.
For bias mitigation in Stable Diffusion [49], the same strat-
egy is applied to address varying levels of bias inherent to
different prompts (e.g., “doctor” being male-dominated ver-
sus “receptionist” being female-dominated).

We adopt the scaling operation to intervene in bias fea-
tures for different attributes and specify the intervention pa-
rameter �. For gender attribute, � is set between 1.4 and
1.5. For the attribute, � = 3.0 is used for the old class,
while � = 1.0 is applied to other classes. Similarly, for race
attribute, � = 5.0 is applied to the black class, � = 1.5 for
Asian and Indian, and � = 1.0 for white. When mitigating
bias, such as in the case of age, we use a uniform probabil-
ity of 1

3 to select one class per batch (e.g., old). The selected
class is intervened with its respective � value (e.g., � = 3.0
for old), while keeping the other classes with � = 1.0. This
approach ensures precise control and flexibility across vari-
ous attributes and classes.

B.1. Dataset Construction
We present details about constructing datasets using in (i)
training k-SAE [35], (ii) training the light-weight classi-
fier for our DIFFLENS and H-Distribution [43], and (iii)
computing attribution score of bias generation. For all
three parts, we leverage the diffusion models (mentioned
in Sec. 5.1) to generate image examples as our dataset.
Dataset for Training K-SAEs. To construct the dataset
for training k-SAEs, we leverage the unconditional diffu-
sion model P2 [10] to generate 35,000 image examples. For
text-to-image diffusion model Stable Diffusion [49], we use
prompt “A face photo of a(an) class {occupation}” to gener-
ate 100,000 images for training. The “class” represents the
categories in the gender, age and race attributes, e.g., male.
The occupations are sampled from a prompt pool which is
presented in [40].
Dataset for Training Light-weight Classifier. For the
training of the light-weight classifier in the unconditional
diffusion model P2 [10], we use it to generate 1,000 images
for each class in an attribute. We use FairFace [25] to deter-
mine the class for these generated images. In text-to-image
diffusion model Stable Diffusion [49], we use prompts “a
{class1}{class2}{class3} person”, where the classi rep-
resent the categories in {gender, age, race} (e.g., “a male
old Indian person”). We generate 1,000 images for each
class in each attribute.
Dataset for Identifying Bias Features. For the support
set of samples X used in identifying target bias features
in Sec. 4.2, we generate 1,000 image samples for each at-



k FID # CLIP-I "
32 6.86 0.9516
64 5.22 0.9695

128 3.71 0.9795

Table 4. Reconstruction effects w.r.t. different choices of k, where
k represents the number of activated features in k-SAE [35]. We
use non-reconstructed (original) outputs as the reference dataset
for calculating both FID and CLIP-I metrics.

tribute (gender, age and race) in both the unconditional and
text-to-image diffusion model. We use the trained light-
weight classifier to discriminate the hidden space represen-
tations of these samples for specific classes in an attribute.

B.2. Training K-SAE on Hidden Space
In Eqs. (3) and (4), the k-SAE contains an encoder Wenc
and a decoder Wdec with the same initialization of parame-
ters. For backpropagation through TopK operation, we use
straight through estimator. We use the DDIM [55] to obtain
the middle block representations in the U-Net [50] for each
image sample introduced in Sec. 4.2. The loss we use is
the reconstruction error introduced in Eq. (5). The dimen-
sion m of the sparse representation space is set to 4096 in
P2 [10] and 5120 in Stable Diffusion[49]. We train k-SAE
in P2 [10] using 2 ⇥ RTX2080Ti GPU and in Stable Diffu-
sion [49] using 2 ⇥ A100 GPU.
Reconstruction Effect with K-SAE. We present the ef-
fect of the reconstruction by using k-SAE in Tab. 4. The
P2 [10] model is used to compare outputs with and without
reconstruction and the non-reconstructed outputs is used as
a reference dataset for both FID and CLIP-I metrics. As we
can see in Tab. 4, as k goes larger, we obtain better recon-
struction effect with the decreasing of FID and increasing
CLIP-I. However, the reconstruction is not the key factor,
as we can see in Tab. 5, there is a trade-off between k and
our efficacy of bias mitigation. We provide visual compar-
isons of reconstruction quality for P2 [10] and Stable Dif-
fusion [49] in Figs. 7 and 8. Images reconstructed using
k-SAE [35] are almost indistinguishable from those gener-
ated by the original diffusion model P2 [10]. For Stable Dif-
fusion [49], using prompts detailed in Appendix C.1, most
semantic features are well reconstructed, although certain
elements, such as the background, may not be fully pre-
served. This discrepancy is likely due to the richer semantic
content of Stable Diffusion [49] compared to P2 [10]. Im-
portantly, since our DIFFLENS does not heavily depend on
the reconstruction quality of k-SAE [35], its performance in
bias mitigation remains unaffected.
Training Results. We present the details about the training
of k-SAEs [50], including hyper-parameters and learning
curves. We train these on the hidden space without con-
ditioning on the time step t, using the same model across

all time steps. This approach significantly reduces the pa-
rameter size. We use learning rates of 0.001 and 0.005,
with batch sizes of 8 and 100, for P2 [10] and Stable Diffu-
sion [49], respectively. For the training curve, we leverage
Fraction of Variance Unexplained (FVU) [35] which is a
related metric of interest, measuring the total amount of the
original activation that is not “explained” or reconstructed
well by k-SAE [35]. We present it as below

FV U =
L(h)
var[h]

, (12)

where h is the hidden state, L(h) is defined in Eq. (5) and
var represents the variance of h. A lower FVU indicates bet-
ter reconstruction performance, as more of the original acti-
vation is captured by the k-SAE model. The training curves
in Fig. 9 show that the k-SAE models for both P2 [10] and
Stable Diffusion [49] are trained to perform well on the
FVU metric.

Figure 9. Training curves of SAE for P2 Model and Stable Diffu-
sion, showing the Fraction of Variance Unexplained (FVU) metric
over the number of training images.

B.3. Training Light-weight Classifier
To accurately locate target features within the hidden space
of diffusion models, we train a classifier to identify which
feature are more closely related to categories within a given
attribute (e.g., male and female for gender attribute) using
the attribution method described in Sec. 4.2. Here we give
the details about how to train such a classifier. After ob-
taining the dataset in Appendix B.1, we follow the setting



Figure 7. Comparison between images generated by original P2 model (top) and using k-SAE (bottom). The reconstructed and original
images are almost identical, indicating effective reconstruction quality.

Figure 8. Comparison between images generated by original Stable Diffusion model (top) and using k-SAE (bottom). We observe minimal
differences between the reconstructed and original images, indicating effective reconstruction quality.

of [43] for training. Then we obtain the middle block hid-
den representations in the U-Net [50] through DDIM [55]
with respective to all time steps. The classifiers Ch

a (ht, t)
are trained as linear heads over the obtained ht, conditioned
on time t and with respective to attribute a. We train the
classifier in both diffusion models using one RTX2080Ti
GPU. As shown in Fig. 10, the classifiers for P2 [10] and
Stable Diffusion [49] achieve high accuracy across all three
attributes: gender, age, and race. Specifically, the gender
attribute comprises 2 classes, age consists of 3 classes, and
race includes 4 classes. Notably, as the time steps approach
the clean image state (closer to 1), the classifier accuracy
consistently improves.

C. Experimental Settings
C.1. Evaluation Pipeline

In this section, we describe the overall steps for evalua-
tion based on metrics in Sec. 5.1. In unconditional diffu-
sion model P2 [10], we generate 10,000 images for each
attribute, including gender, age, race, for each method. We
use FairFace [25] as the classifier for different classes in all
three attributes. In text-conditional diffusion model Stable
Diffusion [49], we use four prompts for evaluation. The
prompt used is “a face of an {occupation}” where the “oc-
cupation” includes doctor, firefighter, nurse, and reception-
ist and two of which are male-biased and two female-biased.
The first two is based on [43] and the latter two prompts are

Figure 10. Light-weight classifier accuracy for P2 Model and Sta-
ble Diffusion for all three attributes (gender, age and race). We
follow [43] and delete time time step 49. We use 1,000 images for
each class in each attribute when training.

from [40] which suggest bias for female and also exhibit age
and race biases. For every prompts, we generate 500 images
for each method. We will introduce how we measure FD,
FID and CLIP-I/T in the subsequent sections.

C.2. Evaluation Metric
Fairness Discrepancy (FD). For evaluating bias mitigation,
we use the metric FD in [43], and we provide details as fol-



lows. To measure the fairness of generated images with re-
spect to a particular attribute a. Given a well-trained classi-
fier for attribute a, denoted as Ca, the FD score is calculated
as

kp̄� Ex⇠p✓(x)[y]k2 , (13)

where p̄ is the target distribution over the attribute classes,
which can be uniform, representing the ideal fair distribu-
tion, y is the softmax output of the classifier Ca(x) for the
generated sample x, and p✓(x) is the distribution of the gen-
erated images. For P2 [10], we use the result of all images
(10,000) in each method. For Stable Diffusion [49], we av-
erage the results of four prompts, each with 500 images.
Fréchet Inception Distance (FID). The Fréchet Inception
Distance (FID) [22] is a metric commonly used to assess
the quality and diversity of generated images in comparison
to real images. Given two sets of images—one generated
and one real—the FID measures the distance between the
feature distributions of these two sets, as extracted by a pre-
trained Inception network. Let N (µr,⌃r) and N (µg,⌃g)
represent the multivariate Gaussian distributions of real and
generated images, respectively, where µr and ⌃r are the
mean and covariance of the real image features, and µg and
⌃g are the mean and covariance of the generated image fea-
tures. The FID is defined as:

FID = kµr�µgk2+Tr
⇣
⌃r + ⌃g � 2(⌃r⌃g)

1/2
⌘
, (14)

where kµr � µgk2 measures the squared differ-
ence between the means of the distributions, and
Tr

�
⌃r + ⌃g � 2(⌃r⌃g)1/2

�
measures the difference

in covariances.
A lower FID score indicates a closer match between the

distributions of real and generated images. The reference
dataset (real images) we use for unconditional diffusion
model is CelebA-HQ dataset [26], while for text-to-image
diffusion models is the FFHQ [27]. When calculating FID
for Stable Diffusion [49], we evaluate images in all four
prompts (2,000) simultaneously for each method.
CLIP-I and CLIP-T. We follow [54] to measure the simi-
larity between originally generated images and images after
bias mitigation. We use two metrics based on CLIP em-
beddings which are CLIP-I and CLIP-T scores. The CLIP-I
score compares the similarity between the original image
embedding e

orig
img and the debiased image embedding e

gen
img,

both extracted using the CLIP model. Formally, we com-
pute the cosine similarity between e

orig
img and e

gen
img as

CLIP-I =
e

orig
img · e

gen
img

keorig
imgkke

gen
imgk

. (15)

This score reflects the preservation of visual features after
bias mitigation.

The CLIP-T score, on the other hand, measures the align-
ment between the debiased image and a text prompt. Given
a text prompt embedding etext and the debiased image em-
bedding e

gen
img, the CLIP-T score is calculated as

CLIP-T =
etext · egen

img

ketextkkegen
imgk

. (16)

The CLIP model we use is CLIP ViT-L/14 [48]. Note that,
when we compare CLIP-I/T scores, we should also take FD
score into account. The reason is that if one method is de-
fective in bias mitigation, most of the time, it will not alter
the generated images much, resulting in a high CLIP-I/T
score. Therefore, we mainly consider methods that are ef-
fective in bias mitigation when comparing CLIP-I/T score.
For CLIP-I in P2 [10], we use the average result of every
generated images (10,000) in each method. For Stable Dif-
fusion [49], we use the average result of the prompts in each
method (i.e., calculating average CLIP-I/T for each image
with a prompt and then average within four prompts).

C.3. Baselines
In this section, we provide details of the implementation of
baseline methods along with specific information on each
approach. For all baselines, we strictly follow their setting
and record their results. All baselines except for Fintun-
ing [54], are based on the bottleneck layer of the U-Net [50]
in diffusion models.
Activation is based on previous work on interpreting GPT-2
using GPT-4 employing internal activation to analyze indi-
vidual features [6]. It suggests that activation in internal
neurons contains meaningful information. In addition, [12]
shows the capability to edit internal neurons to affect the
performance of a neural network. Based on these, we adopt
a similar setting where feature editing is performed directly
on the original activation in the latent space. For a fair com-
parison, we constrain it on the bottleneck layer of the U-
Net [50].
Latent Editing, as described in [32], they learn a latent vec-
tor to steer unbiased image generation through the bottle-
neck layer of the U-Net [50] model. We adopt their ap-
proach to learn latent vectors for each class (e.g., “old”)
across different attributes (e.g., “age”). To mitigate bias,
we apply linear scaling to the learned vectors and incorpo-
rate them into the original bottleneck layer as described in
their methodology.
H-Distribution, introduced by [43], employs distributional
loss on bottleneck layer as guidance in diffusion models.
We directly use the h-classifier for gender attribute they pro-
vided, while we train the multi-class h-classifier for age and
gender, following the methods introduced in the paper.
Latent Direction, introduced by [33], identifies inter-
pretable semantic directions within the latent space of text-
to-image diffusion models, specifically in the U-Net [50]



bottleneck layer. This method optimizes concept-specific
latent vectors by reconstructing images that exclude certain
features in the text prompt while leveraging the pre-trained
model’s semantic knowledge. We learn concept vectors for
gender (male and female), age (young, adult, and old), and
race (white, black, Asian, and Indian) following their set-
ting. These vectors are then combined with equal probabil-
ities to mitigate bias.
Finetuning, introduced by [54], uses distributional align-
ment loss to adjust generated images to align with a user-
defined target distribution. This approach integrates pre-
trained classifiers to estimate class probabilities and fine-
tune Stable Diffusion [49]. The released fine-tuned model
is utilized for generation.

D. More Results
D.1. Sensitivity Analysis of DIFFLENS

In sensitivity analysis, we follow the experiment settings
in Sec. 5.5, which aims at bias mitigation, i.e., generating
balanced outputs. We show that our DIFFLENS is relatively
stable within different hyper-parameters.
K-SAE Hyper-parameters. We adjust different k values
to evaluate the effects of the k-SAEs [50] on bias mitigation
as shown in Tab. 5. As k increases, it is harder to achieve
a balanced outputs, though the reconstruction effect may be
better. We conclude that out method does not heavily rely
on how well we reconstruct the images (see in Algorithm 2
at Appendix A), instead, how well the semantic features are
disentangled and intervened plays a more important role.
We choose k with 32 showing the best performance in bias
mitigation.
Bias Attribution Parameters. We experiment on differ-
ent number of target semantic features ⌧ to be located. The
results are summarized in Tab. 6 where we selected ⌧ =
30 features as the incorporated setting in our experiments,
balancing both low FID of 31.93 and high CLIP-I score of
0.9479 in debiasing gender attribute. We observe that se-
lecting too few features for bias mitigation risks omitting
critical attributes related to biased content. Conversely, se-
lecting a greater number of features facilitates better gener-
ation quality and semantic coherence, as evidenced by im-
provements in FID and CLIP-I metrics.

D.2. Visual Results on Conditional Diffusion Model
We provide the visual results mentioned in Sec. 5.2 for
Stable Diffusion [49]. We include results for the prompt
“A face of a firefighter” for illustration. We use male-to-
female ratio to measure how well the effect of bias miti-
gation is achieved for each method. As shown in Fig. 11,
our DIFFLENS effectively mitigates bias while preserving
generation quality. In contrast, Latent Editing [32] and H-
Distribution [43] struggle to produce balanced outputs and

k
Gender (2)

FD # FID # CLIP-I "
Original 0.226 33.38 -

32 0.002 31.93 0.9479
64 0.005 31.94 0.9524
128 0.008 32.24 0.9113

Table 5. Impact of different TopK parameters in k-SAE on debi-
asing gender attribute. TopK means preserve the k features while
deactivating the rest in the sparse semantic space (see in Sec. 4.1).

⌧
Gender (2)

FD # FID # CLIP-I "
Original 0.226 33.38 -

10 0.003 33.01 0.9446
20 0.001 32.94 0.9466
30 0.002 31.93 0.9479

Table 6. Evaluation of bias mitigation for gender attribute w.r.t.
various choices of feature number ⌧ , where ⌧ means the number
of identified target features in Sec. 4.2. We base on our choice of
k = 32 for this evaluation.

generate distorted images. While Finetuning [54] achieves
high-quality images, it faces challenges in achieving well-
balanced generation.

D.3. Visual Results for Ablation Study
We provide qualitative results for our ablation study
in Sec. 5.5. As shown in Fig. 16, directly selecting neu-
rons with the highest activation values as bias features
(Activation method “Act@L”) performs poorly, supporting
the claim in Sec. 4.1. Selecting features (disentangled by
k-SAE [35]) according to activation value performs even
worse (see in “Act@S”). Comparing “Attr@L” with DIF-
FLENS, although “Attr@L” has effect in debiasing, it suffers
distorted outputs while DIFFLENS are able to achieve excel-
lent performance in debiasing and preserve image quality,
illustrating the importance of disentangling neurons for bet-
ter control.

D.4. Case Study
D.4.1 Accurate Attribution of Bias Features

We provide more examples with our DIFFLENS corre-
sponding to Sec. 5.3. Figure 12 provides visual examples
for comparison with baseline methods.

Following the same settings for generating a male-to-
female ratio of 7:3 as described in Sec. 5.3, our DIF-
FLENS effectively preserves semantic features unrelated to
the target attribute (gender), such as facial expressions, eye-
glasses, background, and race.

In contrast, H-Distribution [43] may unintentionally al-
ter non-target attributes, such as race. For instance, in the



Figure 11. Comparison of randomly sampled original and debiased images generated by Stable Diffusion of the “firefighter” occupation.
Various baseline debiasing methods are compared. The minority group (female) is highlighted with green bounding boxes for easier
viewing. ”M:F” refers to the male-to-female ratio.

Figure 12. Comparison in accurate identification of bias features. Our DIFFLENS preserves overall image semantics such as smile and
eyeglasses while other methods frequently introduce distortions or lose important details.

left example of the first row and the middle example of the
last row, the generated images exhibit changes in racial at-
tributes. Additionally, the background in their generated
images may vary significantly, as seen in the middle and
right examples of the fourth row. Latent Editing [32], on
the other hand, may generates distorted or unrealistic im-

ages, such as the left example from the last row. It also
tends to entangle attributes like age and gender, as demon-
strated in the left example of the second row, where a male
image appears to incorporate old-age features. For origi-
nal images that are male, in the target 7:3 male-to-female
ratio, our DIFFLENS can maintain these images almost un-



Figure 13. Scaling up “female” or “male” features. We adopt the same settings as outlined in Sec. 5.4. Our DIFFLENS demonstrates
smooth editing and highlights its ability to exert fine-grained control over bias levels.

Figure 14. Scaling up “young” or “old” features. We adopt the same settings as outlined in Sec. 5.4. Our DIFFLENS demonstrates smooth
editing and highlights its ability to exert fine-grained control over bias levels.

changed (e.g., the middle example in the fourth row and the
right example in the second row in Fig. 12), aligning with
the desired ratio. In contrast, other methods may inadver-
tently alter the original images or transform them into fe-
male representations, failing to preserve the intended male
attributes.

D.4.2 Fine-grained Control and Editing

More examples showing our control over bias level with
finer granularity (see in Sec. 5.4) are provided within this

section. The settings outlined in Sec. 5.4 are applied, where
generated images are randomly sampled across a broad
spectrum of ratios (e.g., male-to-female and young-to-old).

We release the results of how we transform the origi-
nal image along two gender directions in Fig. 13. As we
can see in Fig. 13, when editing towards male or female,
we preserve generation quality and the visual feature coher-
ence such as eyeglasses and expressions. We also shows
the control over two age directions which are young and old
in Fig. 14. Along the two directions of editing, the hair style



Figure 15. Scaling up “Asian” or “Black” features. We adopt the same settings as outlined in Sec. 5.4. Our DIFFLENS demonstrates
smooth editing and highlights its ability to exert fine-grained control over bias levels.

Figure 16. Qualitative results in ablation study of DIFFLENS in P2 [10] for gender attribute. We abbreviate Original as “Orig.”, neuron
activations as “Act.”, and bias attributions as “Attr”. “@L” denotes operations on the original latent space, and “@S” on sparse semantic
space.

and expressions are preserved in all three examples, even for
earrings (middle example). In Fig. 15, we show the results
of editing race along Asian and black direction. We are able
to achieve a successful editing in both two directions. Ad-
ditionally, for racial attributes, distinct hairstyles are often
observed, such as short hair that is commonly associated
with black individuals in Fig. 15.

D.4.3 Fine-grained Control across Multi-attribute

Addressing social biases across multiple attributes such as
gender and age requires a comprehensive approach that en-
sures fairness without compromising image quality. Our ap-
proach enables fine-grained control over multiple attributes
simultaneously, allowing for unbiased and consistent out-
puts across diverse settings.

In this section, we aim at demonstrating that our DIF-
FLENS are able to mitigate bias with multi-attribute (e.g.,

gender and age) rather than only one attribute (e.g., gen-
der). In addition, we also illustrate the ability to control over
the bias level within multi-attribute. Specifically, we iden-
tify the bias feature indexes for the target multi-attributes
(details provided in Appendix A). These features are then
simultaneously intervened (e.g., male and old features). Vi-
sual results presented in Fig. 17 illustrate that DIFFLENS
effectively transforms images in the male and old directions
without overlap (i.e., the male and old directions do not in-
terfere with each other). This demonstrates the disentan-
glement achieved within the sparse semantic space, as dis-
cussed in Sec. 4.1. We do not compare other baselines ex-
cept for H-Distribution because in [43], they mention that
Latent Editing [32] are unable to mitigate bias in case of
multiple attributes.



Figure 17. Scaling up “old” and “male” features at the same time. We try to control over the bias level across multi-attribute simultaneously
rather than a single attribute, illustrating our ability to disentangle different bias features and accurate identification of these features. We
provide two examples for control over age and gender attributes.

D.4.4 Control of Other Bias Mechanisms

Our DIFFLENS can also disentangle gender attribute with
other features. We conduct additional experiments and

present the results in Fig. 18. As illustrated in the fig-
ure, we can independently control gender attributes (male
and female) along with features in our wide investigation
in Sec. 5.6 such as “Side Pose”, “Short Hair” and “Smile”.



Figure 18. Decoupling and independently controlling gender and
other features. We select three features presented in Sec. 5.6 that
are “Side Pose”, “Short Hair” and “Smile”.

E. Further Discussions
E.1. Complexity of Social Bias

Defining social bias in AI systems is inherently fraught with
complexities due to the fluid, multidimensional nature of
social attributes such as gender and ethnicity, which resist
discrete categorization and are shaped by sociocultural con-
texts [3]. Unlike measurable technical metrics, biases in
systems like text-to-image models often reflecting histori-
cal inequities or stereotyping patterns rather than explicit
labels. For instance, synthetic depictions of fictive humans
lack inherent social identities, forcing evaluators to rely
on subjective interpretations of visual features (e.g., skin
tone or hairstyles) that may not align with real-world self-
identification.

The relative instability effects for race attributes
in Tabs. 1 and 2 may possibly due to the complexity of so-
cial bias and the evaluation is inherently challenging [34],
which requires more robust assessment methods. Addition-
ally, these attributes in dataset may be imbalanced, making
model learning unstable. However, our method balances
debiasing effect (FD [43]) and generation quality (FID [22]
and CLIP-score used in [54]).

E.2. Monosemanticity in Sparse Autoencoder

A monosemantic feature corresponds to one individual con-
cept recognized by the model, in contrast to polysemantic
neurons associating multiple unrelated concepts [4]. While
an SAE automatically disentangles neuron spaces [35],
its semantic space may not fully align with human-
interpretable concepts (see Sec. 3.1 of [4]).

According to [35], the used k-SAE encourages fea-
ture orthogonality, helps disentangle neuron space towards
monosemanticity. It inherently supports disentangled fea-
ture learning [35]. It is empirically supported by low pair-
wise cosine similarity among the learned SAE features in
DIFFLENS with mean value of 0.04 and maximum value
0.17, which somehow indicates dissimilarity and disentan-
glement in sparse feature space.

Bias attribute, e.g., gender, is a human-defined com-
pound concept, may relate to multiple features discovered

by SAEs, for example, short-hair and mustache features.
Our method identifies these associations and can further
separate them (as shown in Fig. 18). Features capture as-
pects of our target concepts, but they may not fully represent
the concepts themselves. To better align these features with
our interpretable concepts is a valuable future direction.

E.3. Quantitative Metric for Changes along One
Direction

Our work explicitly measures specific attribute balancing
(FD [43]) and overall generation quality (FID [22] and

Figure 19. Alignment (CLIP-D score) to specific attribute chang-
ing across gender ratio (x-axis). The Log Gender Ratio reflects the
log of male to female ratio in the generated images, with 0 indi-
cating balance. Our DIFFLENS offers better alignment with each
direction.

CLIP-score that is used in [54]). To further assess specific
attribute changes, we introduce

CLIP-D =
eattr · egen

img

keattrkkegen
imgk

, (17)

where eattr is the target attribute text (e.g., “male”) em-
bedding and e

gen
img is the generated image embedding. Fig-

ure 19 shows that our DIFFLENS achieves better align-
ment to specific attribute change direction (higher CLIP-D)
across varying gender bias ratios.

E.4. Ethics Discussion
In this work, we try to address fairness in both unconditional
and conditional diffusion models by proposing a framework
that identifies and isolates bias mechanisms and control bias
levels in generated contents. While our method does not
prescribe a universal definition of fairness because ethi-
cal interpretations may vary across contexts. Our method
should enable practitioners to enforce distributions consid-
ered appropriate for their applications.

All experiments were conducted using publicly avail-
able datasets and pre-trained models that are permitted for
academic research. Our study prioritizes transparency in
methodology and outcomes. We urge future researchers to
critically evaluate the societal implications of their chosen
distributions to mitigate unintended harms.



Our approach treats debiased attributes as discrete cate-
gories, thereby overlooking individuals who do not neatly
fit traditional classifications (e.g., those identifying as non-
binary gender or of mixed race). This is a significant re-
search question and needs to be addressed by future work.
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