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Overview. The supplementary includes these sections:
• Sec. 1. Introduction video.
• Sec. 2. More experimental results.
• Sec. 3. Implementation details of the experiments.
• Sec. 4. Failure cases and limitations of our model.
• Sec. 5. Details of the RelationBench.
• Sec. 6. Incorporate with CogVideoX-I2V.
• Sec. 7. Social impacts.

1. Introduction Video

We provide a video introduction to our work. Please refer
to “introduction video.mp4” in the supplementary file.

2. Additional Experimental Results

Stable Diffusion 1.5 as base model. We implement
DreamRelation on the SSR-Encoder (SD 1.5-based). As
shown in Fig. 3 and Tab. 1, DreamRelation outperforms
other SD 1.5-based models in our task.
Keypoint Matching Loss. We use X-Pose [8] as our key-
point detector due to its open-vocabulary detection capabili-
ties that are compatible with a wide range of objects, instead
of humans only. The keypoint matching loss (KML) facil-
itates relation generation by explicitly guiding the model’s
pose manipulation, resulting in more accurate pose gener-
ation. As shown in Fig. 2, the cat’s arm crosses the dog’s
body, accurately depicting the ”hug” relation. The visual-
ization in Fig. 4 shows the cosine similarity between the
latent representation of the image prompt and model predic-
tion. Implementation with KML shows a better alignment
of specific parts during training and inference.
Local Tokens Injection. To understand why local fea-
tures enhance relation-aware generation, we employ Prin-
cipal Component Analysis (PCA) to compactly project the
dense features. As shown in Fig. 5, these dense features
provide more fine-grained information than CLIP image to-
kens, offering detailed insights about each object to con-
struct interactions between them. This detailed representa-
tion aids in distinguishing different objects during the gen-
eration process and helps avoid object confusion, particu-
larly in cases of heavy overlap, while also facilitating object
appearance alignment.

Regarding the injection method, we observe that simply
concatenating local tokens with image-level tokens yields
the best performance, as demonstrated in Fig. 3. Additional
ablation studies on the architecture of the Local Image En-
coder, presented in Tab. 2, reveal that CLIP ViT bigG pro-

Method CLIP-T CLIP-R CLIP-I DINO
Custom Diffusion 20.1 15.4 64.7 55.3

SSR-Encoder 24.2 14.6 72.1 56.2
DreamRelation(SD 1.5) 26.1 19.1 72.4 58.9

Table 1. Quantitative results using SD 1.5 as the base model.

Model Multi-object
CLIP-T CLIP-R CLIP-I DINO

EVA-CLIP-L14 23.6 15.7 56.4 54.8
CLIP-ViT-L14 22.9 14.8 58.3 52.7
CLIP-ViT-bigG 28.9 20.4 75.4 62.1

Table 2. Ablation study on Local Image Encoder’s architecture.

Injection method Multi-object
CLIP-T CLIP-R CLIP-I DINO

Add 25.4 18.5 71.0 56.9
Linear Projection 25.8 18.3 68.2 54.4

Concatenate 28.9 20.4 75.4 62.1

Table 3. Ablation study on local token injection methods.

duces the best results across all metrics. We attribute this
success to the compatibility between the local image en-
coder and the CLIP image encoder. Moreover, our investi-
gation into the injection method for local tokens in the gen-
eration process confirms that concatenation, despite its sim-
plicity, is highly effective and consistently achieves superior
results across all metrics.
Relation-Aware Customization Data Engine. Our
relation-aware data are generated using DALLE-3 [1],
which effectively preserves the identity of certain categories
through its multi-turn dialogue capability. Specifically, we
maintain object identity by appending ”the photo of the
same” to the text prompt. Although our relation-aware data
primarily consist of animal categories, they effectively cap-
ture relational information in images and generalize well to
a wide range of objects, as demonstrated in Fig. 1.
Relation-Aware Customized Image Generation. We
present additional qualitative results in Fig. 9, Fig. 14, and
Fig. 1, comparing our method with both training-based and
tuning-based approaches. Our method demonstrates a clear
advantage in pose manipulation to achieve the desired rela-
tions. Further results in Fig. 8 highlight the differences be-
tween DreamRelation and our base model, MS-Diffusion.
Relation Inversion Task. As shown in Fig. 10, our Dream-
Relation substantially enhances SDXL’s ability to generate



Figure 1. Additional results of relation-aware generation across a wide range of objects.

Figure 2. Additional ablation studies on KML and Local Tokens.

Figure 3. Results of SD 1.5 as base model

Figure 4. KML enhances the alignment of specific parts of the
object in the image prompt and model prediction.

images that strictly adhere to specific relations. Compared
to ReVersion [4], our method produces more accurate re-
lations without any object confusion or omissions, high-
lighting DreamRelation’s robust performance in the Rela-
tion Generation task.

3. Additional Implementation Details
Local Image Encoder’s Implementation Details. To en-
hance region-language alignment of dense features, we em-
ploy self-distillation on CLIP-ViT-bigG. The training is
conducted on the train2017 split of the COCO dataset for
6 epochs, using 8 A100 GPUs with a batch size of 2 per
GPU. We apply the Adam optimizer with a learning rate of
1e−5 and a weight decay of 0.1. The Local Image Encoder,
containing 1.8B parameters, extracts local tokens that are



Figure 5. Visualization of Dense feature and Image tokens by Prin-
cipal Component Analysis (PCA).

Figure 6. Multi-object relation-aware image customization results
of pet, toy, plushie, and person.

concatenated with image tokens during fine-tuning and in-
ference to mitigate the confusion problem between objects.
Baselines’ Implementation Details. We incorporate Re-
Version [4] with MS-Diffusion [7] by its official implemen-
tation. We fine-tune a learnable text embedding on a set of
relation-specific images. We inject the text embedding into
the text prompt embedding during inference. We imple-
ment ReVersion [4] on DreamBooth [6] by a similar proce-
dure. For tuning-based methods, we implement Textual In-
version [2], DreamBooth [6], and Custom Diffusion [5] us-
ing their respective diffuser versions, with learning rates and
tuning steps aligned to those reported in the original papers.
We implement Mix-of-Show [3] from their official repos-
itory. We utilize the official implementations and check-
points for training-based methods, adjusting hyperparame-
ters as needed during evaluation. Specifically, we set the

scale to 0.6 in MS-Diffusion [7] and sample 30 steps using
the EulerDiscreteScheduler. For the SSR Encoder [9], we
employ the UniPCMultistepScheduler, sampling 30 steps
and adjusting the scale for each object to accommodate dif-
ferent cases. For λ-Eclipse, we apply the default settings of
the official implementation without modification.

4. Failure cases
As illustrated in Fig. 11, we present three typical failure
cases from our experiments. First, when given unreasonable
relation generation requests—such as asking a plushie oc-
topus, which inherently lacks limbs, to ”shake hands”—our
model compensates by generating additional arms, result-
ing in a mismatched appearance. Second, some generated
relations appear unnatural, exemplified by a duck that fails
to make contact with a cat as intended. Lastly, object con-
fusion at the interaction point remains a common challenge
across all multi-object generation models.

5. RelationBench
In this section, we show the objects and text prompts con-
tained in our RelationBench in Fig. 12, Fig. 13, and Tab. 4.
The objects are selected from well-known benchmarks,
DreamBench and CustomConcept101, covering the com-
monly seen categories in the real world. The relations in
text prompts have covered the most common relations in
the real world.

6. Incorporate with CogVideoX-5b-I2V
Additionally, we use our generated relation-aware cus-
tomized images as the first frame to generate videos by the
CogVideoX-I2V model, the generated results are shown in
Fig. 15. CogVideoX-I2V can handle simple relations such
as ”shaking hands” but struggles with complex interactions
such as ”hugging”.

7. Social Impact
Positive societal impacts. Relation-aware image cus-
tomization enables users to generate images that not only
contain customized objects but also capture their meaning-
ful relationships. This opens up new opportunities for cre-
ative professionals, such as designers, advertisers, and edu-
cators, to communicate complex ideas visually with greater
precision and flexibility. It has the potential to streamline
content creation in diverse fields, from personalized mar-
keting to educational tools, making high-quality, contextu-
ally rich imagery accessible without the need for extensive
resources.
Potential negative societal impacts. The ability to gen-
erate customized images that involve specific relationships
between objects could be misused to fabricate misleading or



Figure 7. Our fine-tuning dataset as an example.

Figure 8. Single-object comparison with our base model MS-Diffusion: The results demonstrate that our method generates more accurate
and natural relation-aware images.

harmful visual narratives, including false representations of
events or manipulative visual content in political or social
contexts. Additionally, if the models are trained on biased
data, they may reinforce existing societal biases, marginal-
izing certain groups, or distorting the accuracy of repre-
sented relationships.
Mitigation strategies. To reduce misuse, ethical guide-
lines should be established to govern the responsible de-
velopment and application of this technology. Promoting
transparency about generated content and integrating fair-
ness and diversity considerations into dataset selection are
key strategies for mitigating potential harms.
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Figure 10. Our DreamRelation is compatible with SDXL to address the Relation Inversion task.

Figure 11. Failure cases of our DreamRelation.



Figure 12. Objects in our proposed RelationBench

Figure 13. Object category in RelationBench



Table 4. Text prompt in RelationBench.

No. Prompt

1 A { } is playing guitar on a park bench.
2 A { } is playing piano in a grand hall.
3 A { } is eating dinner in a bustling restaurant.
4 A { } is dancing in the moonlight.
5 A { } is lifting weights in a modern gym.
6 A { } is reading a book by the fireplace.
7 A { } is skiing down a steep slope in the Alps, with snowflakes falling gently.
8 A { } is sleeping peacefully in a hammock under the shade of a palm tree.
9 A { } is cooking lunch in a kitchen.
10 A { } is singing on stage during a vibrant music festival.
11 A { } is riding a bike along the scenic countryside road.
12 A { } is riding a horse on the grassland.
13 A { } is riding a motorbike on the street.
14 A { } is playing soccer on football playground.
15 A { } is playing chess with a { } under a tree.
16 A { } is partner dancing with a { } in a vintage ballroom.
17 A { } is carrying a { } on the diving room.
18 A { } is fencing with a { } in an elegant arena.
19 A { } shakes hands with a { } in the forest.
20 A { } is kissing a { }.
21 A { } is playing basketball with a { } on a street court.
22 A { } is wrestling with a { } in a championship ring.
23 A { } is hugging a { } in front of the mountain.
24 A { } is fighting with a { } in a garden.
25 A { } is sitting back to back with a { } on a hilltop.



Figure 14. Single-object comparison with our base model MS-Diffusion

Figure 15. Incorporate with CogVideoX-5b-I2V.
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