Enhancing Video-LLM Reasoning via Agent-of-Thoughts Distillation
Appendix

A. Limitation

Despite the advancements mentioned in the paper, several limitations remain and we leave them as future work: (i) similar
to prior approaches [7, 10, 16], the effectiveness of our agent-based system is contingent upon the progress of the underlying
visual model components. Enhancing its ability to generalize across diverse datasets is essential for broader applicability;
(i1) while our primary focus has been on compositional VideoQA tasks [42], and we have demonstrated improvements
across a series of benchmarks, achieving holistic enhancements will require further exploration into creating a more balanced
distribution of training data; (iii) furthermore, our agent-based framework has the potential to address additional video-
related tasks, such as video captioning and referring segmentation. We aim to expand our methodology to these domains,
which could yield even more robust and versatile applications in the future.

B. Experimental Details

B.1. Training Details

For all models, their projection layers and language model are fine-tuned and visual encoder is frozen. We use a cosine
learning rate schedule, with warm up ratio 0.03 and learning rate 4e-5. For both Instruct and AoTD setting, we fine-tune the
model with batch size 48 and totally 1 epoch. We believe that longer training will get a better performance on in-domain
benchmarks but maybe a destroy on out-of-domain benchmarks.

B.2. Specialized Models Evaluation Details

In this section we will show the details about each sub-task’s evaluation from data preparation to evaluation metric.

Question decomposition. Since there may be multiple valid ways to decompose the same problem, we evaluate only the
accuracy of the final output in this sub-task. Specifically, the model takes the query and instruction as input and generates an
executable program. We replace all intermediate outputs within the program and focus on whether the final output matches
the correct answer. If the decomposition is correct, the final output must align with the answer. Any programs that cannot be
executed or that lead to an incorrect answer are considered failures.

Object detection. To evaluate the performance of detection models, we sample frames with scene graph annotations from
the input video clip and provide them, along with the text query, as input to the model. The model then outputs a series
of bounding boxes that exceed a confidence threshold. We select the bounding box with the highest confidence as the final
output and calculate the IoU to assess accuracy.

Temporal grounding. Since scene graphs provide both the start and end frame IDs, as well as key frame IDs for each event,
we use IoU and Recall as metrics to capture different aspects of model performance. The model takes the video clip and
text query as input and outputs the predicted start and end frame IDs. We calculate IoU based on the alignment between the
predicted and annotated start and end frame IDs, and we compute Recall using the key frame ID annotations to evaluate how
well the model captures important frames.

Action recognition. For discriminative models, we provide the video clip and a list of action labels as input to complete a
classification task. For generative models, we provide the video clip along with an instruction prompt, asking the model to
generate five actions most relevant to the video, ranked by likelihood. We then use the top-ranked output from each model to
calculate the Top-1 accuracy for both approaches.

Question answering. The evaluation of question answering follows a similar approach to previous methods. The model
takes the video clip and question as input and returns an answer, from which we directly calculate the accuracy. The key
difference between this sub-task and a standard QA task is that the answers are based on a series of information collected by
preceding agents, allowing for a more accurate assessment of the model’s pure question-answering ability.

C. More Results

Here, we introduce some examples to show the process from query to Chain-of-Thought using our agent-based system. We
can find that our system is able to decompose complex questions into easier sub-tasks and the final CoT retains step-by-step



problem-solving ideas and spatial-temporal information representing video understanding ability.
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Frame 8 Frame 19 Frame 20 Frame 24
Question: Why does the man have to throw the plane first in the middle of the video?
Possible answers: (A) chase the ball (B) the toy car hit the wall (C) put on earmuffs (D) get it start flying (E) bounce baby on cushion
Answer: (D) get it start flying

Question

def execute command(video_clip, query, possible_ answers:
middle clip = trim(video_clip, start=video_clip.num frames//4, end=video_clip.num frames//4*3)
throw_clip = Filter frames_with act(middle clip, 'man throw the plane')
throw_captions = Video_caption(throw_clip)
man_bboxes = Find(throw_clip, 'man')
throw_reason = Video_query(throw clip, query='why does the man have to throw the plane first', Program
possible answers=possible_ answers)
info = {'reason why the man has to throw the plane first': throw reason, 'what happened in the target
video': throw _captions}
answer = select_answer(query, info, possible_answers)
return answer

call function trim

trimmed video from frame 8 to frame 24

call Filter_frames_with_act

filter action man throw the plane

find action from frame 16 to frame 20

call function Video_caption

frame 16: A man and a child playing plane in a park.

frame 17: A man and a child standing in a grassy field.

frame 18: A man and a child standing in a grassy field.

frame 19: A man and a child playing plane in a park.

call function Find Execution Trace

finding man

find man at [283, 45, 330, 247] in frame 16

find man at [215, 117, 249, 263] in frame 17

find man at [189, 122, 220, 266] in frame 18

find man at [201, 132, 236, 277] in frame 19

call function Video_query

Question: why does the man have to throw the plane first

Answer: The man has to throw the plane first because it is a remote control airplane and needs to be launched into the air
before the young boy can start playing with it.

call function select_answer

select: D

program output: get it start flying

To solve this question, we first need to find when the man is throwing the plane in the middle of the video. The man is

throwing the plane from frame 16 to frame 20.

Next, we should find where the man is to better know why he has to throw the plane first. We can do this by analyzing the

man's bounding box region in each frame. The man's bounding box is [283, 45, 330, 247] in frame 16, [215, 117, 249,

263] in frame 17, [189, 122, 220, 266] in frame 18, and [201, 132, 236, 277] in frame 19.

By analyzing the man's bounding box region, we can see that the man is playing with a remote control airplane and needs CoT
to launch it into the air before the young boy can start playing with it. This is because the airplane needs to be in the air

for the boy to play with it.

Therefore, the answer is that the man has to throw the plane first because it is a remote control airplane and needs to be

launched into the air before the young boy can start playing with it. So the answer should be get it start flying.

Figure 5. Example form NExT-QA [43]
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Frame 9 Frame 12 Frame 13 Frame 16

Question: What is the glass object that the person with the ring and the earring is sweeping after the woman holds up a bottle of spray? Question
Answer: car window

def execute_ command(video_clip):
spray_clip = Filter frames_with_act(video_clip, 'woman holds up a bottle of spray')
after_spray clip = trim(video_clip, start=spray clip.end)
sweep_clip = Filter frames with act(after spray clip, 'person with the ring and the earring is
sweeping something') Program
answer = Video_query(sweep_clip, 'what is the glass object')
obj_bboxes = Find(sweep clip, answer)
return answer

call Filter_frames_with_act

filter action woman holds up a bottle of spray
find action from frame 2 to frame 9

call function trim

trimmed video from frame 9 to frame 32

call Filter_frames_with_act

filter action person with the ring and the earring is sweeping something
find action from frame 10 to frame 16

call function Video_query

Question: what is the glass object

Answer: windshield

call function Find

finding windshield

find windshield at [ 26, 91, 179, 292] in frame 10
find windshield at [ 26, 88, 181, 293] in frame 11
find windshield at [ 26, 86, 182, 292] in frame 12
find windshield at [ 27, 90, 172, 292] in frame 13
find windshield at [ 27, 88, 179, 292] in frame 14
find windshield at [ 27, 89, 183, 293] in frame 15
program output: windshield

Execution Trace

To solve this question, we first need to find when the woman holds up a bottle of spray, from the video we can find that

the woman holds up a bottle of spray from frame 2 to frame 9.

Then we should focus on the time period after is, which is frame 9 to frame 32.

The person with the ring and the earring sweeps something from frame 10 to frame 16. CoT
By analyzing the video scene, we can find the woman is sweeping the windsheld with towel.

The wnidsheld can be found at [ 26, 91, 179, 292] in frame 10, [ 26, 88, 181, 293] in frame 11 and so on.

So the answer should be windsheld.

Figure 6. Example form ANetQA [51]

D. Prompts

In this section we present the prompts used in our agent-based system for generating programs, converting execution traces

and filtering CoTs.

D.1. Prompt for Program Generation

For each video and query, we call a code LLM to decompose the query to a Python program under the guidance of the prompt

below. We modify the ViperGPT [37] prompt to adapt to the visual agents we use.

def Query_Obijs(clip, query):
W
Query the objects that appear in video clip and match the query descriptions.
Parameters
clip:
a list of video frames.
query:
Description of the target object.
Returns
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def

def

def

def

a list of bounding boxes of the objects that match the query.
Examples
#return white_objs
def execute_command(video_clip) :
white_objs = Query Objs(video_clip, "white object")

return white_objs
wnn

Query_Actions (clip, obj=None) :
wnn

Find the actions happened in the video clip, if obj is not None, query the actions related to it.

Parameters
clip:
a list of the video frames.
obj:
object class which is used to query the actions related to it.
Returns

a list of actions classes happened in the video clip.
Examples
#return actions
def execute_command(video_clip, query, possible_answers) :
actions = Query_ Actions (video_clip)
return actions

Filter_frames_with_act (clip, action):
wnn

filter a new video clip containing the time period in which the target action occurred
Parameters

clip:

a list of video frames.
action:

the target action which is used to filter frames.
Returns

a new video clip ontaining the time period in which the target action occurred.
Examples
#return jump_clip
def execute_command(video_clip, query, possible_answers) :
jump_clip = Filter_ frames_with_act (video_clip, "person is jumping")
return jump_clip

Filter_frames_with_obj(clip, obj):

nun

filter a new video clip that the target object occured.

Parameters
clip:
a list of video frames.
obj:
class or description about the target object.
Returns

a new video clip that the target object occured in it.

Examples

#return shoe_clip

def execute_command(video_clip, query, possible_answers) :
shoe_clip = Filter_ frames_with_obj(video_clip, "shoe")
return shoe_clip

nun

trim(clip, start=None, end=None) :
wnn
Returns a new video clip containing a trimmed version of the original video at the [start, end]
Parameters
clip:
a list of video frames.
start : Union[int, None]
An int describing the starting frame in this video clip with respect to the original video.

clip.



90 end : Union[int, None]

91 An int describing the ending frame in this video clip with respect to the original video.
92

93 Returns

9% ——————

95 a new video clip with start and end.

9% wnn
97 def Find(clip, obj):
o8 wnn

99 find all bounding boxes around a certain object in the video clip,
100 and collates them into a collection of frames.

101 Parameters

102

103 clip:

104 a list of video frames.

105 obj:

106 the object to look for.

107 Returns

08—

109 a new video clip composed of crops of the object.

110 Examples

111 [

112 # Return the shoe_clip

113 def execute_command(video_clip, query, possible_answers) :
114 shoe_clip = Find(video_clip, "shoe")

115 return shoe_clip

116 nun

17
118 def select_answer (query, info, possible_answers) :

119 nun

120 Uses a language model to choose the option that best answers the question given the input information.
121 Parameters

122 [

123 query:

124 the input question.

125 info:

126 Any useful information to answer the question.

127 possible_answers:

128 a list of possible answers to the question.

129 Returns

130 ——————=
131 one answer chosen from the possible answers.

132 Examples

133 [

134 # Return the answer

135 def execute_command(video_clip, query, possible_answers) :
136 clip_summary = Video_summary (video_clip)

137 info = {

138 "summary of the target video": clip_summary

139 }

140 answer = select_answer (query, info, possible_answers)
141 return answer

142 nun

143 def exist (clip, query):
144 wnn

145 judge whether a object exists in the video.

146 Parameters

147 = ————————

148 clip:

149 a list of video frames.

150 query:

151 query to the object class.

152 Returns

153

154 Return True if the object specified by query is found in the video, and False otherwise.
155 Examples

156 ————————

157 # Return the flag

158 def execute_command(video_clip, query, possible_answers) :
159 flag = exist (video_clip, "shoe")

160 return flag

161 wnn
162 def Video_summary (clip, query):
163 wnn

164 give a brief summary of the video clip related to the query.
165 Parameters

166 [

167 clip:

168 a list of video frames.



)

w

<

10
11
12

13

15
16
17
18
19
20

[CRN RN SRR}

26

query:
a question about the video.

Returns

return a brief summary of the video clip.

Examples

# Return the clip_summary

def execute_command(video_clip, query, possible_answers) :
clip_summary = Video_summary (video_clip, query)
return clip_summary

nun

Write a function using Python and the functions (above) that could be executed to provide an answer to the query.

Consider the following guidelines:

— Use base Python (comparison, sorting) for basic logical operations, start/end, math, etc.

- Objects with mutiple names like "phone/camera", "cup/glass/bottle" with slash, input them as a whole object name.

— Just use the class and function appear above except for some base python operations.

- Only answer with a function starting def execute_command, do not answer any extra words and symbols before and after
the function.

- No text that is not related to function can appear.

— the answer only begins with "def execute_command" and ends with "return answer".

Here are some examples of the function you should write:
question: What else is the person able to do with the door?
possible answers: ["Hold the door.", "Put down the door.", "Close the door.", "Open the door."
def execute_command(video_clip, query, possible_answers) :
door_clip = Filter_ frames_with_obj(video_clip, "door")
person_clip = Find(door_clip, "person")
clip_summary = Video_summary (person_clip, query)
door_actions Query_Actions (person_clip, "door", possible_answers=possible_answers)
door_actions
info = {
"actions the person able to do with the door else": door_actions,
"summary of the target video": clip_summary

}
answer = select_answer (query, info, possible_answers)
return answer

Query: INSERT_QUERY_HERE

possible answers: INSERT_POSSIBLE_ANSWERS_HERE

D.2. Prompt for Execution Trace Conversion

After getting the execution trace by running the program step by step, we use a LLM to convert the trace into a natural
language CoT. The LLM takes query, execution trace, possible answers (in MC-VQA) and execution trace as input. The
instruction prompt is as follow:

Given a video and a question, I wrote the function execute_command using Python, and the other functions above that
could be executed to provide an answer to the query.

As shown in the code, the code will print execution traces.

I need you to rewrite the execution trace into a natural language rationale that leads to the answer.

Consider the following guidelines:

— Use all the bounding box information in the rationale, do not use words like "so on" to omit the bounding box, Jjust

write all of them into the rationale.

- Referencing the execution trace, write a reasoning chain that leads to the most common human answer. Notice that the
output should be the same as the human answer, not necessarily the program output.

— If some part of the rationale lacks logic, add reasonable content to make it logical.

Here are some examples of the rantionale you should write:

Question: What did the person do with the table?

def execute_command(video_clip, query, possible_answers, time_wait_between_lines, syntax):
table_clip = Filter_frames_with_act (video_clip, ’person interacting with table’)
person_clip = Find(table_clip, ’person’)
table_bboxes = Find(table_clip, ’table’)
clip_summary = Video_summary (person_clip)
person_action = Query_Actions (person_clip, ’'table’, possible_answers=possible_answers)
info = {’actions the person do with the table’: person_action, ’'summary of the target video’: clip_summary}
answer = select_answer (query, info, possible_answers)
return answer

Execution trace:

call Filter_ frames_with_act

filter action person interacting with table

find action from frame 2 to frame 11
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call function Find

finding person

find person at [139, 141, 229, 342] in frame
find person at [151, 123, 242, 349] in frame
find person at [153, 121, 242, 274] in frame
find person at [158, 123, 255, 261] in frame
find person at [163, 124, 270, 262] in frame
find person at [153, 121, 242, 351] in frame
find person at [95, 113, 196, 316] in frame 8
find person at [83, 113, 196, 285] in frame 9
find person at [112, 116, 201, 332] in frame 10
call function Find

finding table

S o U WwN

find table at [183, 140, 269, 257] in frame 2

find table at [194, 131, 269, 255] in frame 3

find table at [227, 129, 269, 252] in frame 4

find table at [226, 165, 269, 258] in frame 5

find table at [233, 170, 270, 259] in frame 6

find table at [217, 129, 269, 256] in frame 7

find table at [217, 122, 270, 254] in frame 8

find table at [221, 123, 269, 256] in frame 9

find table at [225, 125, 270, 263] in frame 10
call function Video_summary

summary result: The video shows a man in a kitchen, bending over and holding an orange object, surrounded by various
kitchen items and furniture, with a focus on his actions and the domestic setting.
call function Query_ Actions

2 Query table

Answer: tidied up.

call function select_answer

the information used: - actions the person do with the table: tidied up.

— summary of the target video: The video shows a man in a kitchen, bending over and holding an orange object,
surrounded by various kitchen items and furniture, with a focus on his actions and the domestic setting.

program output: Tidied up.

Rationale:

To solve this question, we first have to find when did the person interact with the table.

From the video, we can see that the person is interacting with the table from frame 2 to frame 11.

In this time period, we can find person at [139, 141, 229, 342] in frame 2, [151, 123, 242, 349] in frame 3, [153,
121, 242, 274] in frame 4 and so on.

Table can also be found at [183, 140, 269, 257] in frame 2, [194, 131, 269, 255] in frame 3, [227, 129, 269, 252] in
frame 4 and so on.

By analyzing the person and table bounding box region, we can see that the person is holding an orange object to clean
the table in the kirchen environment.
So the answer should be tidied up.

Now, look the question, program and execution trace, please transfer these information to a rantionale.
Question: INSERT_QUESTION_HERE

INSERT_PROGRAM_HERE

Execution trace:

INSERT_EXECUTION_TRACE_HERE

Rationale:

D.3. Prompt for CoT Filtering

In order to obtain high quality distillation data, we continue using LLM to filter CoTs. We prompt the LLM to select those
CoTs that are truly helpful for solving questions and reflect the step-by-step thinking process. The prompt is as follows:

I will give you a question and a rationale to solve the question, you need to judge whether the rationale is thinking
step by step and helpful to solve the question.

If yes, return True, If not, return False. no need to explain.

Here is the question and rationale:

Question: INSERT_QUESTION_HERE

Rationale: INSERT_RATIONALE_HERE

D.4. Prompt for Inference

Question: question content
Answer in one word or phrase. / Explain the rationale to answer the question.




/Question: question content \
Options:
(A) option content
(B) option content
(C) option content
(D) option content
Answer with the option’s letter from the given choices directly and only give the best option. / Explain the rationale to

answer the question.
\ /

E. More related works

E.1. Video-language models (Video-LLMs).

Most existing Video-LLMs [4, 44, 55] are composed of a pre-trained visual encoder (like CLIP [34] or SigL.IP [53]) to encode
video frames into a sequence of visual features, an adapter to transfer the visual features to tokens that can be understood by
the language model, and a pretrained LLM to output the final response.

E.2. Visual Programming and Agents.

Recent work like MoReVQA [27] proposes a multi-stage system, getting a strong zero-shot VideoQA ability while is able to
create interpretable intermediate outputs. VURF [25] proposes a self-refinement method to resolve the LLM hallucinations
to get a more concise program based on the context cues.

F. More Ablations

F.1. Analysis on latency and computation.

We compare the agent-based system with the distilled model (LNV-AoTD) across three key metrics. As shown in Table 8§,
LNV-AoTD outperforms the agent-based system in both inference latency and computational efficiency, demonstrating the
necessity of distillation process.

Model Time (s) | Memory (GB) | TFLOPs |
Agent-based system 47.93 65.34 30.98
LNV-AoTD 10.58 18.21 13.53

Table 8. Latency and computation comparison.
F.2. Analysis on more models

We further experiment on VideoLLaMA2[4] and Qwen2-VL[38] using identical settings. The results confirm AoTD’s effec-
tiveness and superior performance.

MVBench STAR AGQA

Model Filtering (Ace.)  (Acc.) (Acc./Score)
LNV-AoTD X 53.7 73.3 59.5/3.5
LNV-AoTD v 55.6 74.3 60.9/3.6
VideoLLaMA2-Instruct - 54.9 69.2 56.0/3.5
VideoLLaMA2-AoTD v 56.0 71.1 57.2/3.5
Qwen2-VL-Instruct - 65.6 71.4 59.8/3.6
Qwen2-VL-AoTD v 66.5 73.1 61.2/3.7

Table 9. Ablation results on more models.
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