
FedAWA: Adaptive Optimization of Aggregation Weights in
Federated Learning Using Client Vectors

Supplementary Material

A. Experiment details
In this section, we provide the details of the experimental
setup, environment, datasets, and model architectures used
in this paper.

A.1. Client Vector and Local Data.
In Section 4.2, we demonstrated experimentally the relation-
ship between the client vector and local data. In this section,
we will provide a more detailed explanation of the experi-
mental setup and offer a further analysis of the results. The
Experiments were conducted to verify whether the client
vector reflects information about the local data. In the ex-
periment, we set up 12 clients, and the dataset we used was
CIFAR-10. To observe the data differences more intuitively,
we introduced an extreme scenario of data heterogeneity:
The local data of clients 1 to 4 contained only the first 5
classes of the CIFAR-10, clients 5 to 8 had only the left 5
classes, and clients 9 to 12 had local datasets that included
all classes. The size of the local dataset for each client was
the same. We calculated the distances between the client
local datasets via optimal transport [3], and the results are
displayed in Figure 2a.

Then, we conducted federated learning training, during
which each client obtained its own client vector τk after local
training. We then compared the distance between the client
vectors, with the results displayed in Figure 2b. The relation-
ships between the client vectors closely resemble those of the
local data distributions. For example, client 1’s client vector
exhibits minimal differences with clients 2-4 due to their
similar local data distributions. However, the differences
between client 1 and clients 5-8 are much larger because
of their highly divergent data distributions: client 1’s local
data contains only the first 5 classes, while clients 5-8 have
only the last 5 classes. The differences between client 1 and
clients 9-12 are smaller than those with clients 5-8, as clients
9-12 include data from all classes, making their distribution
relatively closer to client 1. This demonstrates that the client
vector can effectively capture relevant information about the
local data. Hence, we explored the possibility of leveraging
this phenomenon to enhance the model aggregation process
in federated learning.

If the distance is computed directly using the overall
model parameters, the results, as shown in Figure 2c, indi-
cate that the distances between models are relatively similar.
This is because each client model is optimized from the same
global model, and the parameter variations are small relative
to the overall model parameters. As a result, the local models

do not exhibit significant differences after training, making
it difficult to effectively capture the relationships among the
local datasets. It is important to note that for both Figure 2b
and Figure 2c, we compute the distance between clients vec-
tors and model parameters using 1 - cosine similarity. This
method normalizes the values to a consistent scale (ranging
from 0 to 2), allowing for a more intuitive comparison of the
differences between the models.

A.2. Aggregation Weights.
In this section, we provide more details regarding the experi-
ment in Figure 7. We first calculate the similarity between
the local dataset and the global dataset, where the partition-
ing of the local dataset is the same as in Appendix A.1, and
the global dataset is the union of all local datasets. We use
a pre-trained ResNet20 to extract features from the datasets
and compute the distance between the two datasets using
Optimal Transport [3]. Since our goal is to measure the
similarity between datasets, we convert the OT distance into
a similarity score as:

Similarity(P,Q) =
1

1 + dOT (P,Q)
, (5)

where P and Q represent the distributions of local data and
global data, respectively, while dOT (·, ·) denotes the optimal
transport distance. This results in a k-dimensional dataset
vector representing the similarity between each local dataset
k and the global dataset. This vector depends solely on the
datasets and remains fixed throughout training. The k-th
element in the vector indicates the similarity between the
local dataset k and the global dataset. We use this as the ideal
aggregation weights, assigning higher aggregation weights
to datasets more similar to the global dataset, and vice versa
[43]. We then evaluate the aggregation weights of different
methods by calculating the cosine similarity between the
aggregation weights and the data vector. As shown in Figure
7, the results demonstrate the effectiveness of our method.

A.3. Datasets
In the experiment, we utilized four image classification
datasets: CIFAR-10 [16], CIFAR-100 [16], and Tiny-
ImageNet [6], which have been widely employed in prior
Federated Learning methods [24, 27, 43]. All these datasets
are readily available for download online. To generate a
non-IID data partition among clients, we employed Dirichlet
distribution sampling Dirα in the training set of each dataset,
the smaller the value of α, the greater the non-IID. In our



0 1 2 3 4 5 6 7 8 9
Class ID

0

1

2

3

4

5

6

7

8

9

Cl
ie

nt
 ID

Data Distribution over Clients

0

250

500

750

1000

1250

1500

1750

2000

(a) FashionMNIST, α = 0.1.

0 1 2 3 4 5 6 7 8 9
Class ID

0

1

2

3

4

5

6

7

8

9

Cl
ie

nt
 ID

Data Distribution over Clients

0

250

500

750

1000

1250

1500

1750

2000

(b) FashionMNIST, α = 0.5.

0 1 2 3 4 5 6 7 8 9
Class ID

0

1

2

3

4

5

6

7

8

9

Cl
ie

nt
 ID

Data Distribution over Clients

0

250

500

750

1000

1250

1500

1750

2000

(c) FashionMNIST, α = 100.

0 1 2 3 4 5 6 7 8 9
Class ID

0

1

2

3

4

5

6

7

8

9

Cl
ie

nt
 ID

Data Distribution over Clients

0

250

500

750

1000

1250

1500

1750

2000

(d) CIFAR-10, α = 0.1.

0 1 2 3 4 5 6 7 8 9
Class ID

0

1

2

3

4

5

6

7

8

9

Cl
ie

nt
 ID

Data Distribution over Clients

0

250

500

750

1000

1250

1500

1750

2000

(e) CIFAR-10, α = 0.5.

0 1 2 3 4 5 6 7 8 9
Class ID

0

1

2

3

4

5

6

7

8

9

Cl
ie

nt
 ID

Data Distribution over Clients

0

250

500

750

1000

1250

1500

1750

2000

(f) CIFAR-10, α = 100.

Figure 8. Data distribution over categories and clients.

Table 6. Long-tail Scenarios.

Method CIFAR10-LT CIFAR100-LT

FedAvg 77.45 45.87
CReFF 80.71 47.08
CLIP2FL 81.18 48.20
CReFF+AWA(Ours) 83.11 49.63

implementation, apart from clients having different class
distributions, clients also have different dataset sizes, which
we believe reflects a more realistic partition in practical sce-
narios. We set α =0.1, 0.5, and 100, respectively. When α
is set to 100, we consider the data to be distributed in an IID
manner. The data distribution across categories and clients is
illustrated in Figure 8. Due to the large number of categories,
we did not display the data distribution of CIFAR-100 and
Tiny-ImageNet. Their distributions are similar to the other
two datasets.

A.4. Experiment
In this section, we conducted additional experiments across
long-tail, multi-domain, and text classification scenarios to
further evaluate the performance of the proposed model un-
der more scenarios.

To further evaluate the performance of the proposed

Table 7. Multi-domain Scenarios.

Methods SVHN USPS MNIST SYN AVG
FedAvg 76.56 90.85 98.14 55.01 80.14
FedProx 77.01 90.24 98.11 56.66 80.50
FedProto 80.35 92.44 98.30 53.58 81.16
FPL 80.27 92.71 98.31 61.20 83.12
FPL+AWA(Ours) 80.63 91.58 97.76 70.40 85.09

Table 8. Text Classification.

Method AG News Sogou News
α = 0.1 α = 0.5 α = 0.1 α = 0.5

FedAvg 73.43 70.37 87.68 91.53
FedProx 65.07 74.56 88.60 92.28
FedAWA 77.25 80.23 90.85 94.09

model under more complex data heterogeneity scenarios,
we performed comparisons and integrations with algorithms
specifically designed for these challenging scenarios. These
experiments focused on two primary settings: global long-
tail data distribution and multi-domain data distribution.

For the long-tail data distribution scenario, experimental
results are presented in Table 6. In these experiments, the
proposed algorithm FedAWA was combined with the CReFF
[35] algorithm and compared with federated learning meth-



ods designed to address long-tail data distributions, such as
CReFF [35] and CLIP2FL [36].

Similarly, for the multi-domain data distribution scenario,
the results are shown in Table 7. Here, FedAWA was in-
tegrated with the FPL [13] algorithm and compared with
federated learning methods specifically tailored for multi-
domain distributions, namely FPL [13] and FedProto [37].

The experimental results demonstrate that FedAWA con-
sistently improves model performance even in more complex
heterogeneous data environments, thereby confirming the
stability and robustness of the proposed method.

To further demonstrate the applicability of our method
to textual modalities, we conducted additional experiments
on NLP datasets AG News [47] and Sogou News [47] under
various data heterogeneity settings. As shown in Table 8,
FedAWA consistently outperforms baseline methods in text
classification tasks.

A.5. Hyperparameters
If not mentioned otherwise, The number of clients, participa-
tion ratio, and local epoch are set to 20, 1, and 1, respectively.
We set the initial learning rates as 0.08 and set a decaying LR
scheduler in all experiments; that is, in each round, the local
learning rate is 0.99*(the learning rate of the last round).
We adopt local weight decay in all experiments. We set the

weight decay factor as 5e-4. We use SGD optimizer as the
clients’ local optimizer and set momentum as 0.9.

A.6. Models
For each dataset, all methods are evaluated with the same
model architectures for a fair comparison. In Table 1, We use
ResNet20 [10] for CIFAR-10 and CIFAR-100, ResNet18 for
Tiny-ImageNet. In Table 3, we compare the experimental
results of different model architectures. The specific model
architectures are as follows:

CNN. The CNN is a convolution neural network model
with ReLU activations. In this paper CNN consists of 3
convolutional layers followed by 2 fully connected layers.
The first convolutional layer is of size (3, 32, 3) followed
by a max pooling layer of size (2, 2). The second and third
convolutional layers are of sizes (32, 64, 3) and (64, 64,
3), respectively. The last two connected layers are of sizes
(64*4*4, 64) and (64, num classes), respectively.

ResNet, WRN, DenseNet and ViT. We followed the
model architectures used in [7, 18, 24]. The numbers of
the model names mean the number of layers of the models.
Naturally, the larger number indicates a deeper network. For
the Wide-ResNet56-4 (WRN56 4) in Table 3, ”4” refers to
four times as many filters per layer.


	Introduction
	Experiment details
	Client Vector and Local Data.
	Aggregation Weights.
	Datasets
	Experiment
	Hyperparameters
	Models



