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Supplementary Material

A. Implementation Details

We supplement more details of the training of motion
estimator. For training the motion estimator, we utilize 8
A100 GPUs with batch size 64. The learning rate is set
to 5 × 10−6. To align with the training configuration of
MotionStone, input videos are cropped to a resolution of
480× 720 and sampled to 49 frames. The motion estimator
is trained for 10,000 steps using the Adam optimizer with
β1 = 0.9 and β2 = 0.999. We set the weight of regression
loss λ to 0.1.

B. Details on the Training Data for Motion
Estimator

In this section, we provide more details on the training
data for the motion estimator. We ask 15 annotators to
participate in this annotation process. The annotators are
asked to label video pairs from several aspects: First, they
are asked to determine whether the two videos in a pair
contain a moving object. A video is considered to have
a moving object only if it features a foreground object in
motion. Meanwhile, camera motion focuses on the global
motion in the scene. If a video in the pair contains a
moving object, it is labeled as 1; otherwise, it is labeled
as 0. Note that comparisons of object motion between the
two videos are only made when at least one video in the pair
features a moving object. Next, annotators are tasked with
labeling the relative magnitude of the object and camera
motion in each video pair. If both videos contain object or
camera motion, the corresponding item is annotated based
on the annotators’ subjective judgment. If only one video
in the pair exhibits object or camera motion, the video with
motion is considered significantly greater in the respective
category. Specifically, we define the annotations as follows:
if the first video shows significantly greater camera or object
motion than the second one, it is labeled as 2; if it is
only slightly greater, it is labeled as 1. Conversely, if the
first video shows significantly or slightly less motion, it is
labeled as -2 or -1, respectively. If neither video exhibits
object or camera motion, the corresponding item is labeled
as 0. During the training process using contrastive learning,
this label is employed to amplify the motion differences
between two videos. If a specific motion in the first
video is significantly greater than that in the second, the
corresponding loss is set to twice that of cases with a smaller
difference.

After completing one round of annotation, we conduct

a sampling check on 5,000 video pairs, reviewing 20% of
them. The investigation achieves an accuracy rate of 95%,
meeting the annotation standards. This demonstrates that
the annotated data aligns well with human perception of the
relative magnitude of object and camera motion in videos.

C. User Study on Comparisons with Existing
Alternatives

Since the metrics in VBench [6] cannot fully evaluate
the performance of the model, we conduct user studies.
We ask 10 annotators to participate in this process. To
ensure the generalization of the evaluation, we select a wide
variety of real and animated images, including elements
such as people, animals, camera movement, plants, and
natural landscapes. Twenty image-text prompts are se-
lected and processed by each compared method, including
MotionStone, generating a total of 100 video clips.
Each participant is presented with two videos generated
by different methods for the same prompts and asked to
choose the one that performed better in four aspects: Text
Consistency evaluates if the motion and content follow
the text prompt. Image Consistency assesses the ability
to preserve the identity of the reference image. Content
Quality determines the overall quality of video generation,
including visual appeal, definition, and the logical coher-
ence of the generated content. Motion Quality evaluates
the plausibility and richness of the motion. The pairwise
comparison is repeated for all combinations of videos,
resulting in C5

2 comparisons.
As shown in Tab. 1, our method demonstrates superior

performance, particularly in terms of Text Consistency,
Content Quality and Motion Quality. This highlights the
effectiveness of our approach in text-based motion control
and the generation of videos with content and motion that
align more closely with human perception.

D. Evaluation Metrics

We select several metrics from VBench [6] for quantitative
evaluation experiments, including Background Consistency,
Aesthetic Quality, Imaging Quality, Subject Consistency,
Motion Smoothness, Dynamic Degree and Temporal Flick-
ering. It is important to note that, we utilize only its models
and evaluation processes, excluding its prompt suite. Con-
sequently, some metrics that strictly require the use of the
prompt suite are omitted. The detailed information on each
metric is introduced as follows.



Table 1. Results of user study. The best results for each column are bold. We ask annotators to rate videos based on four aspects: Text
Consistency, which assesses how well the motion and content adhere to the textual descriptions; Image Consistency, which evaluates the
ability to preserve the identity of the reference image; Content Quality, which focuses on inter-frame coherence and definition; and Motion
Quality, which measures the plausibility and richness of the motion.

Method I2VGEN-XL SVD AnimateAnything CogVideoX-5B MotionStone
Text Consistency ↑ 32.50% 39.38% 25.00% 63.13% 90%
Image Consistency ↑ 27.50% 36.88% 56.25% 62.50% 66.88%
Content Quality ↑ 31.25% 45.63% 33.13% 63.13% 76.88%
Motion Quality ↑ 26.25% 48.13% 39.38% 61.25% 75.00%
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“Camera zooms out. A penguin is dancing.” Object Motion Intensity: 4 ,  Camera Motion Intensity: 7Reference Image

Figure 1. Qualitative ablation for proposed modules. Using inter-frame SSIM [3] and feature difference [4] (MotionStone w/ SSIM
and MotionStone w/ S) causes varying degrees of unnatural background motion (In the first row, the snow block in the upper left corner
of the third column appears. In the second row, background motion blur is observed.) and does not follow the camera motion described in
the text prompt. Omitting the proposed motion estimator (MotionStone w/o M) and the decoupled injection method (MotionStone
w/o D) results in issues such as generating static video and confusion or overlap between camera motion and object motion control,
respectively. These approaches also fail to follow the camera motion described in the text prompt successfully.

Background Consistency. This metric measures the tem-
poral consistency of the background scenes by calculating
CLIP [10] feature similarity across frames.

Aesthetic Quality. This metric assesses the human-
perceived artistic and aesthetic value of each video frame
utilizing the LAION aesthetic predictor. This tool captures



various aesthetic dimensions, including composition, color
richness and harmony, photorealism, naturalness, and the
artistic quality of the video frames.
Imaging Quality. Imaging quality pertains to distortions
such as over-exposure, noise, and blur observed in the
generated frames. This metric measures this using the
MUSIQ [8] image quality predictor, which is trained on the
SPAQ [5] dataset.
Subject Consistency. This metric calculates the DINO [2]
feature similarity across frames to evaluate the consistency
of a subject’s appearance throughout the video.
Motion Smoothness. Evaluating the smoothness of motion
in generated videos and its adherence to real-world physical
laws is crucial. To assess this, this metric leverages motion
priors from the video frame interpolation model [9].
Dynamic Degree. As a completely static video might
perform well in the previously mentioned temporal quality
metrics, it is essential to assess the level of dynamics (i.e.,
the presence of significant motions) in the generated videos.
To achieve this, this metric uses RAFT [11] to estimate the
extent of dynamics in the synthesized outputs.
Temporal Flickering. Generated videos may display
imperfect temporal consistency, particularly in local and
high-frequency details. To quantify this, this metric extracts
static frames and calculates the mean absolute difference
between them.

E. Limitation

Although MotionStone has made notable progress in
I2V generation and motion intensity control, it still faces
several limitations. First, MotionStone is built upon
CogVideoX, and due to constraints in memory and com-
putational resources, it can only generate videos of ap-
proximately 6 seconds in length at a specific resolution.
We believe that as the computational demands of foun-
dational video generation models decrease in the future,
MotionStone will be able to generate longer videos with
higher resolutions. Second, with reduced computational
resource requirements, it will be feasible to design a larger
motion estimator and leverage more extensive training
datasets to develop a more powerful model. The enhanced
motion estimator could better assist I2V generation, and
such advancements will lead to superior performance.
Third, since our motion estimator is trained by assigning
a single motion intensity to the object and camera motion
for each video, it may not be able to control different
motion intensities for multiple objects within a video or for
different parts of a single object. We believe that as the
annotation of training video captions becomes more fine-
grained and the labeling of video motion intensity expands
to multiple dimensions, our model will be able to achieve
more precise and diverse motion control.

F. More Experiments
In this section, we first present additional ablation studies,
including more detailed qualitative and quantitative exper-
iments, as well as an evaluation of the motion strength
error of our proposed motion estimator compared to pre-
vious motion intensity estimation methods. Subsequently,
we provide more specific quantitative comparison results.
Finally, we provide additional cases to showcase the gener-
ative capabilities of MotionStone.

F.1. More Ablations
More Quantitative and Qualitative Results. We first sup-
plement additional quantitative metrics on VBench [6] to
demonstrate the superiority of MotionStone. As shown
in Tab. 2, benefiting from the support of the motion esti-
mator and the decoupled injection method, MotionStone
outperforms other motion intensity modulation approaches
and models without these strategies in terms of gener-
ated quality, inter-frame consistency of subjects and back-
grounds, motion magnitude, and temporal quality.

Furthermore, we conduct qualitative ablation studies.
As shown in Fig. 1, we generate videos using prompts
containing both camera and object motions. We observe
that MotionStone w/ S and MotionStone w/ SSIM
fail to follow the camera motion described in the text
prompt. Additionally, MotionStone w/ S exhibits
unnatural motion in background objects (e.g., the snow
block in the upper left corner of the third column), while
MotionStone w/ SSIM displays motion blur issues.
These problems are common to non-decoupled motion
intensity modulation methods, as they inadvertently cause
undesirable background motion while animating the sub-
ject. We observe that the MotionStone w/o M model,
which does not utilize the motion estimator, generates static
frames without responding to the specified motion inten-
sity. This issue arises because, during training, the model
does not receive varying signals corresponding to different
motion intensities but rather a constant signal. As a result,
the model fails to interpret the provided intensity control
signals and is unable to model motion intensity accordingly.
MotionStone w/o D exhibits excessive motion, affecting
both the object and the camera motion. Moreover, it fails
to follow the text prompt to perform a zoom-out motion,
instead generating an opposite camera motion. This issue
stems from the lack of decoupled injection of camera and
object motion intensity signals. Without clear separation,
the model struggles to associate the signals with the specific
motion components they are meant to control, leading to
unpredictable overlap or confusion. Consequently, the
generated video lacks coherent and orderly control. In
contrast, MotionStone accurately follows the object and
camera motion descriptions provided in the text prompt and
generates visually appealing and motion-consistent videos



Table 2. More quantitative ablation results on VBench [6]. The best results for each column are bold. Motion Estimator (M), Decoupled
injection strategy (D). SSIM and S mean previous motion modeling methods: inter-frame SSIM [3] and feature difference [4] respectively.

Method Background Aesthetic Imaging Subject Motion Dynamic Temporal
Consistency Quality Quality Consistency Smoothness Degree Flickering

MotionStone w/o M 95.13% 45.61% 60.15% 93.34% 98.51% 43% 96.51%
MotionStone w/o S 94.97% 46.13% 60.73% 92.99% 98.48% 42% 96.42%
MotionStone w/ SSIM 92.99% 45.72% 54.75% 88.96% 97.51% 47% 93.54%
MotionStone w/o D 94.03% 46.27% 58.73% 92.54% 97.59% 48% 95.20%
MotionStone 95.76% 46.78% 62.29% 94.56% 98.96% 48% 97.41%
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“Camera pans right. The camel is walking.”
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Figure 2. Illustrations of object and camera motion intensity guidance. MotionStone can decouple and independently control
camera motion and object motion intensities. When either camera motion or object motion is increased, the generated videos exhibit
excellent adherence to the respective motion changes.

based on the specified motion intensities. This demonstrates
the effectiveness of the proposed modules.

Motion Intensity Guidance. We provide an additional
example to demonstrate the decoupled control capabilities
of MotionStone for object motion and camera motion
intensities. As shown in Fig. 2, in the first two rows, the
text prompt does not specify camera motion, so the camera
motion intensity is set to the minimum. By increasing the

control of object motion intensity, it is evident that the
camel moves faster. In contrast, in the last two rows, we
introduce camera motion descriptions in the text prompt
and adjust the camera motion intensity while reducing the
control of object motion intensity. It is observable that as
the object motion intensity decreases from 7 to 4, the camel
slows down. Meanwhile, as the camera motion intensity
increases from 3 to 9, the camera pans to the right more
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Reference Image “Pouring water into the glass.”

“Mouse falls to the ground.”

“Bigfoot is walking through the woods.”

“Camera zooms in. A giant striped planet rotates.”

“A young woman adjusts her gaze and hand while holding a leafy branch.”

Figure 3. More cases generated by MotionStone. MotionStone demonstrates impressive generation quality across various
scenarios. Here, the default object motion intensity or camera motion intensity (if applicable) is set to 5.

Table 3. Ablation on motion intensity guidance. Compared
to previous methods, our motion estimator achieves more precise
control over motion intensity, generating videos with camera or
object motion that better aligns with user requirements.

Method Motion Strength Error

Feature Difference (S) [4] 11.55
SSIM [3] 11.27

Ours 2.52

quickly. These examples strongly demonstrate the ability of
the MotionStone to decouple and independently control
camera and object motions in generated videos.

Furthermore, we compare the performance of different
motion intensity guidance methods. Using predefined mo-
tion intensity values, we generate videos and subsequently
apply a motion estimator to obtain the corresponding mo-
tion intensities. The mean squared error (MSE) between the
generated video intensities and the input values is then cal-



Table 4. More quantitative comparison results on VBench [6]. The best results for each column are bold.

Method Background Aesthetic Imaging Subject Motion Dynamic Temporal Camera
Consistency Quality Quality Consistency Smoothness Degree Flickering Motion

I2VGen-XL [13] 90.93% 40.14% 58.35% 86.97% 97.02% 44% 95.24% 18.87%
SVD [1] 93.17% 42.38% 59.61% 93.23% 97.39% 40% 94.70% 22.67%
AnimateAnything [4] 93.89% 46.04% 61.69% 93.72% 97.58% 4% 95.48% 12.19%
CogVideoX-5B [12] 94.91% 45.88% 61.99% 94.39% 98.76% 36% 96.73% 73.26%
MotionStone 95.76% 46.78% 62.29% 94.56% 98.96% 48% 97.41% 81.52%

culated. As shown in Tab. 3, the motion estimator proposed
in this work provides more stable motion guidance and
ensures that the motion intensities in the generated videos
align more closely with the user-specified values.

F.2. More Results

We supplement additional quantitative comparison results
across more evaluation dimensions on VBench [6] and
VBench++ [7], as shown in Tab. 4. MotionStone
demonstrates superior performance in terms of temporal
quality and motion magnitude of the generated videos
compared to previous methods.

We also provide additional examples generated by
MotionStone, as shown in Fig. 3. These include real
human figures, anime-style characters, animals, and natural
scenes. MotionStone demonstrates remarkable capabil-
ities in conjuring entirely new content out of thin air.

We provide the original video cases showcased in the
paper within the supplementary materials. The detailed
video effects can be found in the designated folder.

Since there is currently no perfect metric for evaluating
a model’s ability to disentangle motion intensity, we further
propose evaluation metrics that assess motion disentangle-
ment capability from two perspectives: absolute values and
linear correlation. As shown in Tab. 5, we propose a new
benchmark for motion intensity control using newly de-
signed MSES (Motion Strength Error Score) and M-SRCC
(Motion Spearman Rank-Ordered Correlation Coefficient)
metrics. Each prompt combines camera and object motion
descriptions to evaluate the model’s decoupling of motion
intensity control. We construct a benchmark consisting
of 30 text prompts and their corresponding images. For
evaluating object and camera motion, we randomly sample
motion intensities from 1 to 10 for the targeted aspect while
selecting from three fixed values (2, 6, and 10) for the
other aspect, generating 10 motion intensity combinations
per video. MSES computes the normalized ([0,1]) mean
squared error between generated and input motion intensity,
while M-SRCC quantifies motion consistency via Spear-
man rank correlation across varying motion inputs. Both
independently assess object and camera motion, denoted by
subscripts o and c. The final score is obtained through av-
eraging. As shown in Tab. 5, MotionStone outperforms
other methods in all dimensions, proving its effectiveness.

Table 5. New designed metrics for motion intensity control.

Metric Motion Type SVD AnimateAnything MotionStone
MSESo Object 44.18% 45.07% 83.95%
M -SRCCo Object 60.00% 66.50% 80.50%
MSESc Camera 47.57% 29.41% 85.64%
M -SRCCc Camera 68.00% 58.00% 82.00%

Final Score All 54.94% 49.74% 83.02%
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