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1. Method
1.1. Distance Function
The distance function c(Ti, dj) between track Ti and detec-
tion result dj is defined as:

c(Ti, dj) = (cHMIoU (Ti, dj) + cApp(Ti, dj)

+ λ1cConf (Ti, dj) + λ2cAng(Ti, dj)) / 2, (1)

where cHMIoU , cApp, cConf , and cAng are HMIoU, co-
sine, confidence, and angular distance, respectively, similar
to Hybrid-SORT [7], and λ1 and λ2 are universally set to
0.2 and 0.1, respectively, for every dataset.

1.2. Flowchart and Pseudocode
For clarity, we provide the overall pipeline of our Track-
Track in Fig. 1 and the pseudocode for Track-Perspective-
Based Association (TPA) in the algorithm 1. As illustrated
in Fig. 1, tracks are categorized as confirmed and uncon-
firmed tracks. We utilize high-confidence detection results,
low-confidence detection results, and high-confidence de-
tection results removed during NMS. TPA matches these
detection results with confirmed tracks, as described in the
algorithm 1, with an iterative association procedure. Then,
unmatched high-confidence detection results are matched
with unconfirmed tracks. Finally, matched tracks are
updated, and Track-Aware Initialization (TAI) uses these
matched tracks along with unmatched detection results to
initialize new tracks.

2. Experiments
2.1. Datasets
MOT17 [3] consists of seven sequences each for training
and testing, while MOT20 [2] contains four sequences each
for training and testing. DanceTrack [6] comprises 40, 25,
and 35 sequences for training, validation, and testing, re-
spectively. During the validation with MOT17, we utilized
its four training videos for training and the remaining three
training videos for validation to avoid object duplication be-
tween the training and validation splits.

Algorithm 1 Track-Perspective-Based Association

Require: Existing tracks T ; Detection results D =
Dhigh ∪ Dlow ∪ Ddel; Kalman Filter KF;

Ensure: Matched pairsM
1: Initialization:M← ∅
2: # Predict the next location for each track
3: for i← 1 : len(T ) do
4: Ti ← KF(Ti)
5: end for
6:
7: # Cost matrix calculation
8: for i← 1 : len(T ) do
9: for j ← 1 : len(D) do

10: if dj ∈ Dhigh then
11: Cij = c(Ti, dj)
12: else if dj ∈ Dlow then
13: Cij = c(Ti, dj) + τp
14: else if dj ∈ Ddel then
15: Cij = c(Ti, dj) + τq
16: end if
17: end for
18: end for
19:
20: T ′ ← T , D′ ← D, C′ ← C
21:
22: # Iterative association
23: while max(C′) < τm do
24: M′ ← {(Ti, dj)|Ti = argminTl∈T ′ C ′

lj , dj =
argmindk∈D′ C ′

ik, C
′
ij < τm}

25: M←M∪M′

26: T ′ ← T ′ \ {Ti | (Ti, d) ∈M′}
27: D′ ← D′ \ {dj | (T, dj) ∈M′}
28: C′

ij = Cij for all Ti ∈ T ′, dj ∈ D′

29: τm ← τm − r
30: end while
31: Return:M
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Figure 1. Overall algorithm of our proposed TrackTrack. Given the previous tracks, the bounding box locations for the current frame are
predicted using the NSA Kalman filter. The tracks are divided into confirmed and unconfirmed tracks, where confirmed tracks are the ones
that tracked three or more frames, and unconfirmed tracks are the ones that tracked less than three frames. We utilize high-confidence
detection results, low-confidence detection results, and high-confidence detection results that are deleted during NMS steps. Based on the
Track-Perspective Association (TPA), the detection results and confirmed tracks are matched. Then, unmatched high-confidence detection
results are matched with unconfirmed tracks, also based on TPA. The matched tracks are updated, and their current location is utilized by
Track-Aware Initialization (TAI) along with unmatched detection results to initialize new tracks.

2.2. Implementation Details
The penalty terms τp and τq of the TPA strategy and the
NMS IoU threshold in TAI were set as 0.20, 0.40, and 0.55,
respectively. The matching threshold τm is set as 0.70, 0.55,
and 0.60 for MOT17 [3], MOT20 [2], and DanceTrack [6],
respectively, for the test evaluation. The reduction term r
is s set as 0.05. The detection confidence threshold for dis-
tinguishing high and low-confidence detection results is set
similarly to the previous works [5, 8] while detailed settings
are shared in our GitHub codes 1.

2.3. Qualitative Results
Our TrackTrack demonstrates significant improvements in
robustness compared to a baseline tracker using the Hungar-
ian algorithm and multi-stage association scheme, as illus-
trated in Fig. 2. In challenging scenarios, such as handling
detection noise, recovering from occlusions, and resolving
overlaps, TrackTrack consistently outperforms the baseline.
For instance, our tracker maintains correct identity consis-
tency when the detection noise causes the baseline to swap
IDs 10 and 89. The reduced threshold of each iteration
suppresses the matching between the detection noise and
tracks. Similarly, after an occlusion where the baseline mis-
assigned ID 56 as ID 61, TrackTrack successfully recovered

1https://github.com/kamkyu94/TrackTrack

the original identity of the object. Again, with severe over-
laps where the baseline switches IDs 6 and 3, our method
ensures consistent identity tracking. This is the result of the
association considering all detections simultaneously, pro-
viding robustness in occlusion. These results highlight the
robustness of our TrackTrack, which effectively addresses
common challenges in online multi-object tracking through
the novel association process.

Despite the improvements of TrackTrack, some failure
cases persist. The common reason is that the features of
the tracks are not clear due to rapid movement or severe
occlusion so it is hard to prevent the ID switch or the ef-
fect of detection noises. In Fig. 3 (a), ID 8 is lost, and
ID 7 undergoes an identity switch during its rapid move-
ment. The drastic changes in position and posture make
detection challenging, leading to low similarity scores with
existing tracks. Similarly, in Fig. 3 (b), our tracker loses
ID 22 during a severe occlusion. These cases highlight the
challenge of maintaining stable associations under extreme
motion and occlusion conditions, suggesting the need for
further refinements in the tracking algorithm. Also, despite
our advanced methods, some detection noises still affect the
tracking performance. In Fig. 3 (c), the original track with
ID 15 confuses the object due to the detection noises, and
another track takes up the role of ID 15. Future research
will further explore strategies to effectively suppress detec-
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Figure 2. Qualitative comparisons between the baseline tracker, which uses the Hungarian algorithm and multi-stage association scheme,
and our TrackTrack with the novel assignment and single-stage association methods. In the results from the baseline tracker, (a) ID 10
and 89 are switched because of the detection noise, (b) ID 56 is changed to 61 after occlusion, and (c) ID 6 and 3 are switched after the
overlap. In contrast, our TrackTrack shows correct tracking results in every case, demonstrating its robustness against detection noise and
occlusions.
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Figure 3. Examples of failure cases. In (a), ID 8 is changed to 7 after dynamic movements, and in (b), the person who was designated ID
22 is re-designated as ID 40, and the track ID 22 is no longer following a meaningful target. In (c), the person who was designated ID 15
is re-designated as ID 18, and track ID 15 is following detection noises.

tion noise, enhancing the overall robustness of the tracking
system.

2.4. Ablation Studies
We provide additional details for the ablative results shown
in the main paper by adding more comparing metrics. Also,
we performed ablation studies to examine the influence of
the penalty terms τp, τq , reduction term r, and the IoU
threshold during NMS in Track-Aware Initialization (TAI).

2.4.1. Component Ablation
Table 1 shows the detailed results of component ablation.
As in the table, each strategy remarkably improves almost
every score in both datasets.

2.4.2. Assignment Method
In Table 2, we can confirm the detailed comparison of our
proposed assignment method against the traditional Hun-

garian algorithm. The results demonstrate the superiority of
our algorithm.

2.4.3. Association Stage
A detailed ablative result to demonstrate the effectiveness of
our joint association scheme within TPA is presented in Ta-
ble 3. The result indicates that the joint scheme outperforms
the multi-stage association strategy in most metrics.

2.4.4. Using Deleted Detection Results
In Table 4, a detailed evaluation result for the impact of uti-
lizing Ddel is shown. The result reveals that incorporation
of Ddel enhances tracking performance in most cases.

2.4.5. Penalty Term
An ablative study to assess the impact of the penalty
terms τp and τq in our Track-Perspective-Based Associa-
tion (TPA) strategy is shown in Table 5. The result reveals
that our tracker achieves enough performance on MOT17



MOT17-val DanceTrack-val
TPA TAI HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑ HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑

67.3 83.2 78.3 69.6 65.5 61.9 65.4 92.6 47.7 80.7
✓ 68.5 84.6 78.8 72.0 65.5 62.9 66.2 92.5 49.1 80.9

✓ 67.4 83.3 78.8 69.6 65.8 62.6 66.6 92.6 48.7 80.9
✓ ✓ 69.1 85.1 79.5 72.7 66.0 63.3 66.8 92.5 49.7 80.8

Table 1. A detailed ablative study for our proposed strategies.

MOT17-val DanceTrack-val
Assignment HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑ HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑
Hungarian 68.1 83.9 79.6 70.5 66.2 61.6 64.8 92.2 47.1 80.9

Ours 69.1 85.1 79.5 72.7 66.0 63.3 66.8 92.5 49.7 80.8

Table 2. Detailed comparisons between using the Hungarian algorithm and our assignment method that considers local matching precision.

MOT17-val DanceTrack-val
Association HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑ HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑
Multi-Stage 68.5 84.2 79.1 71.8 65.9 63.2 67.5 92.5 49.8 80.6
Joint (Ours) 69.1 85.1 79.5 72.7 66.0 63.3 66.8 92.5 49.7 80.8

Table 3. Detailed comparisons between the multi-stage cascade association of each Dhigh, Dlow, and Ddel similar to the previous works
[1, 7, 8] and joint association of all detection results as we proposed.

MOT17-val DanceTrack-val
Use Ddel HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑ HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑

✗ 68.6 85.0 79.5 71.9 65.9 62.1 65.1 92.6 47.6 81.3
✓ 69.1 85.1 79.5 72.7 66.0 63.3 66.8 92.5 49.7 80.8

Table 4. A detailed ablative study for the influence of utilizing the deleted detection results Ddel in our tracking process.

and the highest HOTA score on DanceTrack when we set τp
and τq to 0.20 and 0.40, respectively. Therefore, we use τp
of 0.20 and τq of 0.40 as our default setting for our Track-
Track to optimize the association process by effectively pe-
nalizing unlikely matches without overly constraining the
association flexibility.

2.4.6. Reduction Term
Table 6 presents an ablative study about the reduction term
r in TPA. The result demonstrates that the optimal perfor-
mance is achieved when r is set to 0.05, resulting in the
highest HOTA, IDF1, and AssA scores on both datasets.
Thus, we use r of 0.05 as our default setting, effectively
reducing the influence of weaker associations while main-
taining substantial tracking accuracy and association con-
sistency for each matching iteration.

2.4.7. IoU threshold during NMS in TAI
An ablative study is conducted to assess the influence of
different IoU thresholds during non-maximum suppression
(NMS) in our Track-Aware Initialization (TAI) strategy.

The result, presented in Table 7, indicates that the highest
performance on both datasets is observed in most metrics
when the IoU threshold is set to 0.55. Therefore, we use the
IoU Threshold of 0.55 as the default setting in our TAI since
it provides the optimal balance between maintaining accu-
rate track initialization and avoiding excessive suppression
of potential detections, thereby maximizing overall tracking
accuracy.

2.5. Computational Cost of a Full Pipeline

Table 4 presents the computational efficiency of our Track-
Track compared to other state-of-the-art trackers, Deep OC-
SORT [4] and Hybrid-SORT-ReID [7], on the MOT17-val
and DanceTrack-val datasets. The results show the frame-
per-second (FPS) of the entire pipeline, including object de-
tection, feature extraction, and tracking, for each tracker.
As in the table, our TrackTrack achieves the highest FPS
on both datasets, indicating superior efficiency. These re-
sults confirm that our method achieves robust tracking per-
formance while maintaining high computational efficiency.



MOT17-val DanceTrack-val
τp τq HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑ HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑

0.15 0.35 69.2 85.1 79.2 73.0 66.1 62.7 66.5 92.3 49.4 80.1
0.15 0.40 69.3 85.2 79.1 73.1 66.1 63.2 66.7 92.4 49.9 80.5
0.15 0.45 68.8 85.0 79.1 72.3 66.0 62.3 66.0 92.5 48.5 80.5

0.20 0.35 69.1 85.1 79.5 72.7 66.0 62.1 65.7 92.4 48.1 80.7
0.20 0.40 69.1 85.1 79.5 72.7 66.0 63.3 66.8 92.5 49.7 80.8
0.20 0.45 68.6 85.0 79.5 71.9 65.9 61.9 65.0 92.6 47.5 81.0
0.25 0.35 68.4 84.3 79.1 71.6 65.8 62.9 66.2 92.5 49.2 80.8
0.25 0.40 68.4 84.3 79.2 71.6 65.8 63.1 66.8 92.6 49.6 80.6
0.25 0.45 68.3 84.5 79.2 71.5 65.7 62.4 65.6 92.7 48.3 80.9

Table 5. An ablative study for the penalty terms τp and τq in TPA.

MOT17-val DanceTrack-val
r HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑ HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑

0.025 69.0 85.1 79.7 72.6 66.1 62.0 65.3 92.2 48.1 80.2
0.050 69.1 85.1 79.5 72.7 66.0 63.3 66.8 92.5 49.7 80.8
0.075 68.5 84.9 79.5 71.8 65.9 62.0 65.2 92.7 47.8 80.9

Table 6. An ablative study for the reduction term r in our TPA.

MOT17-val DanceTrack-val
IoU Thr. HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑ HOTA↑ IDF1↑ MOTA↑ AssA↑ DetA↑

0.45 68.8 84.8 79.1 72.5 65.7 63.2 66.8 92.4 49.6 80.8
0.50 68.9 84.9 79.2 72.7 65.7 63.3 66.9 92.5 49.8 80.8
0.55 69.1 85.1 79.5 72.7 66.0 63.3 66.8 92.5 49.7 80.8
0.60 69.1 85.1 79.5 72.7 66.0 63.2 66.8 92.5 49.6 80.8
0.65 68.7 84.8 79.3 72.1 65.8 63.2 66.7 92.5 49.6 80.9

Table 7. An ablative study for the IoU threshold during NMS in our Track-Aware Initialization (TAI).

MOT17-val DanceTrack-val
Tracker FPS↑ FPS↑

Deep OC-SORT [4] 8.36 14.02
Hybrid-SORT-ReID [7] 7.59 14.23

TrackTrack 9.22 14.53

Table 8. Computational costs of a full pipeline, including object
detection, feature extraction, and tracking, of other state-of-the-
art methods [4, 7] and our TrackTrack. Each value represents the
frame per second (FPS) of the corresponding case.

(The evaluation server is changed due to an internal matter,
so the FPS values here are much lower than the results of
the main paper.)

2.6. Integration with E2E Detectors
TPA can adapt to end-to-end frameworks, such as DETR,
by treating all predicted boxes equally during the associa-

tion step. For example, if we compare TPA and the multi-
stage & Hungarian-based association scheme while using
only certain detection results (Dhigh + Dlow in our set-
ting), HOTA scores are 68.6 and 67.6, respectively, with
MOT17-val. The replacement with better detectors would
enhance the performances, and our approaches would also
show a synergy effect and contribute to the overall perfor-
mance based on its diverse advantages, such as better as-
signment over the Hungarian algorithm. We will add the
related discussion and the integration results with the end-
to-end frameworks in our supplementary material as soon
as possible and release it on the GitHub repository 2.
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and Laura Leal-Taixé. Mot20: A benchmark for multi-object
tracking in crowded scenes. arXiv:2003.09003, 2020. 1, 2

[3] Patrick Dendorfer, Aljos̆a Os̆ep, Anton Milan, Konrad
Schindler, Daniel Cremers, Ian Reid, Stefan Roth, and Laura
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