
Efficient Fine-Tuning and Concept Suppression for Pruned Diffusion Models

Supplementary Material

A. Details of APTP

Adaptive Prompt-Tailored Pruning (APTP) [12] is a novel
prompt-based pruning method designed for Text-to-Image
(T2I) diffusion models. T2I diffusion models are computa-
tionally intensive, especially during the sampling process,
making their deployment on resource-constrained devices
or for large user bases challenging. APTP aims to reduce
this computational cost by tailoring the model architecture
to the complexity of the input text prompt.

Instead of using a single pruned model for all inputs,
APTP prunes a pretrained T2I model (e.g., Stable Diffu-
sion) into a mixture of efficient experts, where each ex-
pert specializes in generating images for a specific group
of prompts with similar complexities. This is illustrated in
Figure 1 of their paper.

At the heart of APTP lies a prompt router module. This
module learns to determine the required capacity for an in-
put text prompt and routes it to an appropriate expert, given
a total desired compute budget. Each expert corresponds to
a unique architecture code that defines its structure as a sub-
network of the original T2I model. The number of experts
(and corresponding architecture codes) is a hyperparameter.

The prompt router consists of three key components:
1. Prompt Encoder: Encodes input prompts into semanti-

cally meaningful embeddings using a pretrained frozen
Sentence Transformer model.

2. Architecture Predictor: Transforms the encoded prompt
embeddings into architecture embeddings, bridging the
gap between prompt semantics and the required archi-
tectural configuration.

3. Router Module: Maps the architecture embeddings to
specific architecture codes. To prevent all codes from
collapsing into a single one, the router module employs
optimal transport during the pruning phase. The optimal
transport problem aims to find an assignment matrix Q
that maximizes the similarity between architecture em-
beddings and their assigned architecture codes while en-
suring equal distribution of prompts to different experts.
This optimal assignment matrix is calculated using the
Sinkhorn-Knopp algorithm and is used to route architec-
ture embeddings to architecture codes during pruning.
The prompt router and architecture codes are trained

jointly in an end-to-end manner using a contrastive learn-
ing objective.

B. Method for solving the bilevel problem

Classical methods for solving a bilevel problems such as
Eq. (9) require calculating second order information, please

see [7, 8, 13] For examples. However, when fine-tuning
foundation models, this process becomes extremely ex-
pensive due to the high computational and memory de-
mands. Recently, new frameworks for bilevel optimization
have been introduced [24, 30, 32, 35, 45]. These methods
only use first-order information and thus significantly re-
duce computational costs, making them extremely suitable
for fine-tuning foundation models. We employ this type of
method for solving Eq. (9).

More, specifically, Eq. (9) is equivalent to the following
constrained optimization problem:

min
ωpruned

Ex0,ε,t,c,c→→ωω(xt, t, c
→)↑ ωωpruned(xt, t, c)→2,

s.t. Lft(εpruned)↑ inf
ϑ

Lft(ϑ) ↓ 0.
(15)

By penalizing the constraint, we obtain the following penal-
ized problem:

min
ωpruned

Lpenalized(εpruned), (16)

where

Lpenalized(εpruned) :=

Ex0,ε,t,c,c→→ωω(xt, t, c
→)↑ ωωpruned(xt, t, c)→2

+ ϖ

(
Lft(εpruned)↑ inf

ϑ
Lft(ϑ)

) (17)

and ϖ > 0. As ϖ increases, the solution to the penalized
problem approaches the solution to Eq. (15), and thus the
solution to Eq. (9) (see [35] Theorem 2 for an explicit rela-
tionship between the stationary points of Eq. (15) and those
of the original problem Eq. (9)). Note that the penalized
problem Eq. (11) is equivalent to the following minimax
problem:

min
ωpruned

max
ϑ

Gϖ(εpruned,ϑ), (18)

where

Gϖ(εpruned,ϑ) :=

Ex0,ε,t,c,c→→ωω(xt, t, c
→)↑ ωωpruned(xt, t, c)→2

+ ϖ
(
Lft(εpruned)↑ Lft(ϑ)

)
.

(19)

To solve Eq. (18), we use a double loop method. At step
t, we fix εtpruned and then solve the maximization problem
maxϑ Gϖ(εtpruned,ϑ). Then we update εpruned using the
gradient of ↔ωprunedGϖ(εtpruned,ϑ). Since the gradient of
G with respect to εpruned is determined both by the upper



loss and lower loss, this incorporates more information from
feature distillation when doing concept unlearning. There-
fore, the upper and lower level problems are dependent on
each other. This is the key difference between the two-stage
method and our bilevel method.

C. Experiments

C.1. Detailed experimental setup

C.1.1. Datasets

In all our experiments, we use the MS-COCO Captions
2017 [29] with approximately 500k training image-caption
pairs. For evaluations, we use the validation data of MS-
COCO-2017 with 5000 images. We sample one caption per
image from the validation set.

C.1.2. Effect of Distillation and Pruning Experimental

Setting

We utilize one of the pre-trained APTP [12] experts on
COCO, which achieves 80% MAC utilization compared to
the original Stable Diffusion 2.1 model [40]. The model is
fine-tuned using various objectives at a fixed resolution of
512↗512 for all configurations. Optimization is performed
with the AdamW [34] optimizer, using parameters ϱ1 = 0.9
and ϱ2 = 0.999, no regularization, and a constant learning
rate of 10↑6, coupled with a 250-iteration linear warm-up.
Fine-tuning is conducted with an effective batch size of 64,
distributed across 8 NVIDIA A6000Ada 48GB GPUs, each
with a local batch size of 8.

In experiments combining DDPM and distillation losses,
we compute a weighted average of the loss terms as follows:
• Diffusion loss: weight = 1.0
• Distillation loss: weight = 2.0
• Feature distillation loss: weight = 0.1

For sample generation, we employ classifier-free guid-
ance [18] with a guidance scale of 7.5 and 25 steps of the
PNDM sampler [31]. We calculate FID [16] on the valida-
tion set of COCO-2017 for Figs. 4 and 5.

C.1.3. Concept Removal Experimental Settings

In a two-stage pipeline, we first fine-tune the expert de-
scribed in Appendix C.1.2 for 20,000 iterations using
DDPM, incorporating both output and feature distillation
objectives. The fine-tuning settings are identical to those
detailed in Appendix C.1.2.

Baselines We use ESD [9], UCE [10] and Concept-
Prune [2] as the concept removal methods for a two-stage
distillation-then-forget pipeline. Details of each method fol-
lows:
• ESD [9]: ESD is a method for erasing concepts from

text-to-image diffusion models by fine-tuning the model

weights using negative guidance. The goal is to re-
duce the probability of generating images associated with
a specific concept, represented by Pω(x) ↘ Pω↑ (x)

Pω↑ (c|x)ε ,
where Pω(x) is the distribution of the edited model,
Pω↑(x) is the distribution of the original model, c is the
concept to be erased, and ς is a scaling factor. By ma-
nipulating the gradient of the log probability, the au-
thors arrive at a modified score function: ωω(xt, c, t) ≃
ωω↑(xt, t) ↑ ς[ωω↑(xt, c, t) ↑ ωω↑(xt, t)]. This function
guides the model away from the undesired concept dur-
ing fine-tuning. The method uses the model’s existing
knowledge of the concept to generate training samples,
eliminating the need for additional data. ESD offers two
variations: ESD-x for prompt-specific erasure, such as
artistic styles, and ESD for global erasure, such as nudity.
Similar to the original paper we remove ”Van Gogh”,
”Claude Monet”, and ”Picasso” from the diffusion model
for artist erasure, and remove ”nudity” for explicit content
erasure. This process uses the AdamW [34] optimizer
with a learning rate of 0.00001, and a negative guidance
ς = 1. The model is trained for 1000 iterations to remove
the concept. For artist style and explicit content removal
we pick ”ESD-x” and ”ESD-u”, respectively.

• UCE [10]: UCE is a method for editing multiple con-
cepts in text-to-image diffusion models without retrain-
ing. UCE works by directly modifying the attention
weights of the model in a closed-form solution, mak-
ing it efficient and scalable. The method aims to ad-
dress various safety issues such as bias, copyright in-
fringement, and offensive content, which previous meth-
ods have tackled separately. UCE modifies the cross-
attention weights, denoted as W , to minimize the differ-
ence between the model’s output for the concepts to edit,
ci, and their desired target output, v↓i . This is achieved
by minimizing the objective function:

∑
ciinE

||Wci ↑
v↓i ||22+

∑
cj↔P ||Wcj↑W oldcj ||22 where E represents the

set of concepts to edit and P represents the set of concepts
to preserve. This formula ensures that the model’s out-
put for the edited concepts is steered towards the desired
target, while preserving the output for the concepts that
should remain unchanged. Identical to the original setting
of the paper, we remove ”Van Gogh”, ”Claude Monet”,
and ”Pablo Picasso” for artist erasure and guide them to-
wards ”art”. We remove ”nudity” for explicit content re-
moval and guide them towards ”person”. Other hyper-
parameters are identical to the values set in their training
code.

• ConceptPrune [2] ConceptPrune is a method for remov-
ing unwanted concepts from pre-trained text-to-image
diffusion models without any retraining. This is achieved
by pruning or zeroing out specific neurons within the
model’s feed-forward networks that are identified as be-
ing responsible for generating the unwanted concept.



This method is inspired by the observation that certain
neurons in neural networks specialize in specific con-
cepts. ConceptPrune first Identifies skilled neurons by
analyzing the activation patterns of neurons in response to
prompts with and without the unwanted concept and then
prunes them. For ConceptPrune, we set skill ratio to 0.01.
We remove ”Van Gogh”, ”Claude Monet”, and ”Picasso”
from the diffusion model for artist erasure, and remove
”nudity” for explicit content erasure. Other hyperparam-
eters are identical to best settings in their released code.

Bilevel Experimental Setting For fine-tuning the pruned
model according to our bilevel training setting, we use the
same hyperparameters as the standard fine-tuning objective
mentioned in Appendix C. We do 20 lower steps between
two upper steps. We set ϖ in Eq. (14) to 100. In each
upper level step we do a step identical an ESD [9] step.
Each lower level step in our approach is identical to a stan-
dard fine-tuning with denoising and distillation mentioned
for the two-stage method. We set the upper learning rate to
5e↑ 6.

C.2. More Results

Our framework is compatible with any unlearning tech-
nique. Our baseline is a two stage distillation + unlearn-

ing framework rather than a specific unlearning technique.
The objective of our experiments was to demonstrate how
our bilevel method even when paired with a basic unlearn-
ing approach like ESD can outperform two stage baselines
with powerful unlearning methods.

C.2.1. Unlearn - Prune - Distill Baseline

A natural question would be to compare our method with
an alternative baseline where the concepts are first unlearnt
from base model and then distillation is done. This baseline
requires more resources than our method since unlearning
occurs on the unpruned model. However, our analysis ap-
plies to this approach too. We conduct an experiment for
this baseline (See Tab. 3 rows 1 and 2), and the generation
quality is worse. This is expected—applying unlearning
to the base model reduces its quality. Using this degraded
model for distillation further impacts the performance of the
already weaker pruned model.

To show this compatibility with other unlearning meth-
ods, we ran two additional experiments: (1) Two-stage
pipeline with the recently proposed AdvUnlearn [58] and
(2) our bilevel framework with AdvUnlearn [58]. Results
in Tab. 3 confirm our method integrates well with AdvUn-
learn [58] and achieves superior performance in terms of
ASR and FID compared to all baselines.

We provided more samples from our method in Fig. 8.

Method ASR (⇐) FID (⇐)

Distilled Model + ESD [9] 62.7 32.47
ESD [9] + Distilled Model 59.8 39.11
Distilled Model + UCE [10] 67.6 41.55
Distilled Model + CP [2] 54.9 29.56
Distilled Model + AdvUnlearn [58] 36.6 36.17
Ours (ESD [9]) 57.0 26.80

Ours (AdvUnlearn [58]) 32.4 26.91

Table 3. Attack Success Rate of adversarial NSFW prompts from
[4] and generation quality on COCO-Val-2017

C.3. Figure Prompts

Samples in Fig. 1 are generated by the prompts in Tab. 4.
The prompts used for Fig. 2 are presented in Tab. 5. Tab. 6
shows the prompts for generating the samples inf Fig. 6.

Prompts

The Artist’s House at Argenteuil by Claude Monet
Child in a Straw Hat by Mary Cassatt

Table 4. Prompts for Fig. 1

Prompts

Water Lilies by Claude Monet
The Three Dancers by Pablo Picass
Red Vineyards at Arles by Vincent van Gogh
A landscape with bold, unnatural colors fauvism style
Girl with a Pearl Earring by Johannes Vermeer
Night In Venice by Leonid Afremov
The Great Wave of Kanagawa by Hokusai
A watercolor painting of a forest

Table 5. Prompts for Fig. 2

Prompts

The Cliff Walk at Pourville by Claude Monet
Portrait of Dora Maar by Pablo Picasso
The Weaver by Vincent van Gogh
Photo of a sad man by Nobuyoshi Araki
A landscape with bold, unnatural colors fauvism style
The Great Wave of Kanagawa by Hokusa

Table 6. Prompts for Fig. 6



Figure 8. More visual samples of our bilevel method(with ESD)
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