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A. Extended related works

In the following, we provide extended remarks about prior
literature on conformal prediction. Concretely, we delve
into its historical transductive nature and two different fam-
ilies of methods for further improving the conformal infer-
ence in vision: conformal training and methods that assume
access to additional data splits.
Transduction in conformal prediction. Initially, this reli-
ability framework was transductive [1, 48, 53]. The orig-
inal setting, usually called full conformal prediction, as-
sumes access to i.i.d. labeled training and unlabeled test
samples for producing the conformal sets. These methods
require evaluating all the label space, Y = {1, 2, ...,K}, to
fit label-specific models, including all values of y that are
sufficiently consistent for a given significance level. Such
computational overload prohibits its use in modern deep-
learning models. In contrast, split conformal prediction
[46, 66] assumes a more resource-efficient, practical setting.
Given a trained, black-box model that outputs logit predic-
tions, it assumes access to a fresh labeled calibration set ex-
changeable [66] to testing data. Even though it was initially
known as inductive conformal prediction [46, 64], split con-
formal prediction does not necessarily preclude transduc-
tion mechanisms [19]. Our transductive approach differs
from these initial conceptions on full conformal prediction
but exploits transduction while adapting a black-box model
following the split conformal prediction setting.
Conformal training in vision. A family of works, known
as the conformal training, focuses on preparing the base
model to enforce small predictive sets [9, 59] or improving
sample adaptiveness by regularizing learning to produce ho-
mogenous non-conformity scores [15]. Conformal training
methods [9, 15, 59] are not applicable in the era of founda-
tion models, where models are trained on limited occasions
using general learning objectives and accessed for efficient
adaptation. Thus, they do not apply to the explored black-
box setting and fall out of the scope of this paper.
Improving conformal sets with additional data splits.
Within the black-box split conformal prediction, recent
literature explores novel aspects of well-known non-
conformity scores, such as APS or RAPS. For example, [59]
explores the impact of temperature scaling, and [13] stud-
ies its behavior on tasks with many classes and, more par-
ticularly, the class-conditional coverage these scores offer.
Also, the authors propose different strategies for improv-
ing these approaches. First, Conf-OT [59] proposes to train
the optimum temperature scaling by minimizing the effi-
ciency gap in a costume loss function. Also, Clustered Con-

formal Prediction [13] integrates a clustering step to find
subgroups of classes with similar quantized behavior for a
given non-conformity score using K-means. The groups are
then employed to perform conformal prediction at the clus-
ter level. Such measures have shown improvement over the
base adaptive methods, i.e., APS and RAPS. However, this
comes at the cost of incorporating additional data splits to
adjust the proposed methods without potentially breaking
the exchangeability to test data. In this work, we stick to
the standard experimental setting by accessing one calibra-
tion set uniquely. We argue that this setting is more realistic,
especially in critical scenarios such as detecting rare, low-
prevalence diseases [17, 30, 54].

B. Non-conformity scores
The following formally introduces the non-conformity
scores employed in this paper. The measures are designed
so that smaller conformal scores correspond to larger model
confidence levels. These are employed to search its quantile
that satisfies the 1-α coverage in the calibration set, follow-
ing Eq. (3), and producing conformal sets in test samples as
detailed in Eq. (4) in the main manuscript.
Least Ambiguos Classifier. The intuitive idea of LAC [39]
is constructing sets by thresholding the output probabilities
with a confidence level. Thus, the non-conformity score can
be constructed as:

S LAC(x, y) = 1− xk=y. (11)

LAC produces the minimum set sizes in case the input
probabilities are correct. However, it lacks adaptiveness,
e.g., in under-represented categories.
Adaptive Prediction Sets. Aiming to improve adaptive-
ness, APS [51] construct the confidence sets based on accu-
mulating ordered class confidences, such that:

S APS(x, y) = ρx(y) + xk=y · u, (12)

where ρx(y) is the total probability mass of the set of
labels more likely than the input label y, i.e., ρx(y) =∑

k′∈Y′(x,y) xk=k′ , withY ′(x, y) = {k|xk > xk=y}. Also,
note that u ∈ [0, 1] is a random variable to break ties and
archive exact 1-α marginal coverage.
Regularized Adaptive Prediction Sets. Even though APS
produces better coverage than LAC across different data
subgroups, it comes at the cost of producing large set sizes.
To tackle this issue, RAPS [2] incorporates penalties when
adding categories into the accumulative confidence proce-
dure, thus taming the score distribution tail.



Dataset Classes Splits b/u Task description Text templates
Train Val Test

ImageNet [11] 1,000 1.28M - 50,000 b Natural objects recognition. ”Itap of a [CLS].” , ”A bad photo of [CLS].” ,
”A origami of [CLS].” , ”A photo of the large [CLS].” ,
”A [CLS] on a video game.” , ”Art of the [CLS].” ,
”A photo of the small [CLS].” , ”A photo of a [CLS].”

ImageNet-A [23] 200 - - 7,500 u Natural objects recognition.
ImageNet-V2 [50] 1,000 - - 10,000 b Natural objects recognition.
ImageNet-R [24] 200 - - 30,000 u Natural objects recognition.
ImageNet-Sketch [68] 1,000 - - 50,889 b Sketch-style images.

SUN397 [70] 397 15,880 3,970 19,850 b Scenes classification. ”A photo of a [CLS].”
FGVCAircraft [37] 100 3,334 3,333 3,333 u Aircraft classification. ”A photo of [CLS], a type of aircraft.”
EuroSAT [22] 10 13,500 5,400 8,100 u Satellite image classification. ”A centered satellite photo of [CLS].”
StanfordCars [27] 196 6,509 1,635 8,041 u Cars classification. ”A photo of a [CLS].”
Food101 [4] 101 50,500 20,200 30,300 b Foods classification. ”A photo of a [CLS], a type of food.”
OxfordPets [47] 37 2,944 736 3,669 u Pets classification. ”A photo of a [CLS], a type of a pet.”
Flowers102 [43] 102 4,093 1,633 2,463 u Flowers classification. ”A photo of a [CLS], a type of flower.”
Caltech101 [16] 100 4,128 1,649 2,465 u Natural objects classification. ”A photo of a [CLS].”
DTD [8] 47 2,820 1,128 1,692 b Textures classification. ”[CLS] texture.”
UCF101 [58] 101 7,639 1,898 3,783 u Action recognition. ”A photo of a person doing [CLS].”

Table 4. Datasets overview. Detailed description of the 15 datasets used to evaluate the conformal inference of zero-shot vision-language
models. Also, the handcrafted textual templates for setting the zero-shot text-driven classifier for each dataset are indicated. These are the
same ones used in relevant prior literature on this topic [56, 75]. “b”/“u” denotes balanced or unbalanced test partitions, respectively.

RAPS can be formally introduced as:

S RAPS(x, y) = S APS(x, y) + λ · (o(x, y)− kreg)
+, (13)

where λ, kreg ≥ 0 are hyper-parameters that control the
strength of the constraint, ox(y) is the rank of the label
y in the sorted predictions, o(x, y) = |Y ′(x, y)| + 1, and
(·)+ represented the ReLU function. Regarding the hyper-
parameters, λ is the additional confidence cost of incorpo-
rating each new category to the set, and kreg is the category
index in which the penalty starts.

C. Additional datasets details

Datasets . As stated in the main manuscript, we perform a
large-scale benchmark on the conformal prediction of CLIP
models across typical datasets employed for transferability
[18, 49, 75]. Concretely, we employ 15 datasets, which
compile thousands of general concepts, fine-graned cate-
gories, textures, and actions. Also, it is worth noting that
these benchmarks include 9/15 unbalanced tasks, which are
commonly more challenging to address in vision classifi-
cation literature. A summary of the employed datasets and
task descriptions is depicted in Tab. 4. Regarding the dataset
splits, we employed the ones proposed in seminal works for
few-shot adaptation of CLIP [18, 75].
CLIP’s text templates . For creating text prototypes
for zero-shot and transfer learning using CLIP, the tar-
get category names (”[CLS].”) are forwarded through the
text encoder. These category names are usually com-
bined with hand-crafted text templates, which provide ad-
ditional context on the task at hand, e.g., ”A centered
satellite photo of [CLS].” We followed prior
works in this aspect [56, 75], using common text templates
for each task, which are depicted in Tab. 4.

D. Evaluation of conformal inference
The evaluation metrics indicated in the experimental section
are formally introduced in this section.
Top-1 accuracy. To evaluate the discriminative perfor-
mance of CLIP models, we employ accuracy, a widely ex-
tended metric in few-shot literature [18], and conformal pre-
diction in vision [2].

The following details the metrics employed to evaluate
the conformal inference methods. For that purpose, let us
assume an arbitrary data set D = {(xi, yi)}Ii=1, an error
rate of coverage level α, and the function creating the con-
formal sets from a non-conformity score C(x), which op-
erates as in Eq. (4), after finding the non-conformity score
threshold from a calibration subset. We refer the reader to
Sec. 3.2 in the main manuscript for other definitions.
Coverage. The empirical coverage on the test domain
is employed to measure the degree of satisfaction of the
marginal coverage guarantees:

Cov(D) = 1

I

∑
i∈D

δ[(yi ⊂ C(xi)], (14)

where δ denotes a delta function, that is, 1 if its argument is
true, and 0 otherwise.
Set size. The average set size, also known as inefficiency
[59], is a widely employed metric [2, 13, 69] for assessing
the utility of conformal prediction methods for multi-class
classification problems. An optimum conformal method in
terms of efficiency should provide a lower set size:

Size(D) = 1

I

∑
i∈D
|C(xi)|. (15)

Class-conditional coverage violation (CCV). A recently
proposed metric in [13] to evaluate the adaptiveness of a



conformal prediction method based on measuring the em-
pirical coverage gap observed in each category in the target
task. An optimal conformal method in terms of adaptive-
ness is expected to provide a small average gap:

CCV(D) = 100× 1

|Y|
∑
k∈Y

∣∣Cov(Dk)− (1− α)
∣∣, (16)

where | · | over the scalar in the summation term represents
the absolute value, and Dk indicates the subset of samples
labeled as the category k, such that Dk = {(xi, yi)}i∈Bk

,
with Bk = {i | yi = k}. Note that the metric is multiplied
by 100 to provide a percentage scale.

E. Details on inductive adaptation
Fig. 1(b) refers to an experiment using the calibration set
for adapting the zero-shot logits to the new tasks, so-called
Adapt+SCP. Concretely, we train new class prototypes on
the logit space, W ∈ RK×K . These weights are initialized
in the simplex corners and are l2-normalized during training
such that wk = wk

||wk||2 . Given the labeled calibration set,
Dcal= {(li, yi)}Ni=1, we first l2-normalize the received logit
representations, l = l

||l||2 . Then, the new scores based on
the learned class prototypes are obtained as follows:

l′k = −τ LP

2
||l−wk||, (17)

where τ LP is a temperature scaling parameter, which is
searched greedily based on calibration data for each dataset,
and l′ = (l′k)1≤k≤K are the new logits for a given sample.
Finally, for a given sample, the new output probabilities are
the softmax of the new logits: p = σk(l

′).
The inductive adaptation consists of learning the new

class weights based on a few shots available on calibration
data by minimizing cross-entropy:

min
W
− 1

NK

I∑
i=1

K∑
k=1

yik log pik, (18)

where {{yik}Ii=1}Kk=1 are the one-hot-encoded labels.
Training is performed via mini-batch gradient descent, us-
ing large batches of 2, 048 samples and ADAM as an op-
timizer, with a learning rate of 0.1, during 500 iterations,
using a cosine decay scheduler for the learning rate.

F. Transductive adaptation baselines
As stated in the main manuscript, there is no clear candidate
to include as a baseline for the proposed setting: training-
free, transductive adaptation of VLMs using black-box logit
predictions. Hence, we adapted two transductive training
approaches for the task: a general transductive formulation
based on mutual information, i.e., TIM [5], and the recently

proposed TransCLIP [73], a GMM-based method specially
designed for zero-shot VLMs.
Transductive information maximization [5]. TIM is a
general framework based on mutual information for adjust-
ing a set of class prototypes on unlabeled data. Formally,
the employed input logits, class weights, and new proba-
bilities are obtained as in the inductive setting detailed in
Section Appendix E. More concretely, softmax probabili-
ties are obtained following Eq. (17). In contrast, TIM oper-
ates unsupervised and targets an entropy minimization loss
with the regularized label-marginal distribution. We fol-
low the SGD-based version proposed by the authors and
modify the Shannon entropy maximization term by a KL
divergence, which allows us to employ the observed label-
marginal on the calibration set, i.e., m. Two versions are
proposed, with different regularizations for the predicted
label-marginal distribution, m̂ = 1

N+M

∑N+M
i=1 pi. These

two versions are:
TIMKL(m̂||uK): the base version, closer to the original work
in [5] employes a uniform target label-marginal distribution,
such that:

min
W

α

N

I∑
i=1

K∑
k=1

pik log pik +

K∑
k=1

uK log
uK

m̂
. (19)

TIMKL(m̂||m): the modified version, leverages the marginal
distributions observed in the calibration set, whose anno-
tated labels are available:

min
W

α

N

I∑
i=1

K∑
k=1

pik log pik +

K∑
k=1

m log
m

m̂
. (20)

The training is performed by gradient descent, using
large batches of 2, 048 samples during 100 iterations,
ADAM as an optimizer, and a base learning rate of 0.001.
The later hyper-parameters follow the advice provided in
SGD-TIM [5]. Finally, it is worth mentioning that we found
TIM highly sensitive to the choice of τ LP in Eq. (17). To
alleviate this issue, τ LP is searched using a grid of τ LP ∈
{0.1, 1, 5, 10, 15, 30, 60, 100} per dataset. We employed the
accuracy on the calibration set after transductive adaptation
as the maximization objective for such a search. Note that
these labels are available in the split conformal inference
scenario, and we did not observe any empirical degradation
in marginal coverage. Also, α is fixed to α = 0.1.
TransCLIP [73]. We perform minor modifications over
the base zero-shot version proposed by the authors. First,
we set the zero-shot CLIP prototypes as the corners of the
logit simplex. Second, we find the method relatively sensi-
tive to the text-guided KL divergence penalty λ, which we
increased to λ = 10 upon a greedy search to avoid perfor-
mance degradation. In terms of performance, our results ob-
tained with this baseline are close to the figures reported by



the authors in TransCLIP. Concretely, for ViT-B/16, we ob-
tained an average accuracy of 65.1 for 15 datasets. For the
same tasks, the authors report 68.1 accuracy. This perfor-
mance gap is explained by the difference in the input given
to TransCLIP since logit scores can be seen as using pro-
jections of the original features, with the consequent infor-
mation loss, especially for tasks with small categories, such
as EuroSAT. Concretely, this dataset mainly contributes to
such an average accuracy gap (−16.8).

As a final remark, we would want to highlight the pres-
ence of key hyper-parameters on the explored baselines.
The performance for each specific task might be sensitive
to the choice of these. In contrast, Conf-OT does not intro-
duce any critical hyper-parameter that could degrade the
transfer learning performance.

G. Additional results
This section introduces additional results and specific met-
rics that showcase Conf-OT’s effectiveness compared to the
prior art and validate its key elements and robustness across
various scenarios.

G.1. Additional CLIP backbones
In Tab. 7, we report the performance of Conf-OT atop ad-
ditional CLIP, i.e., ResNet-101, ViT-B/32, and ViT-L/14,
and MetaCLIP, i.e., ViT-B/16, and ViT-H/14, backbones.
The results are consistent with the main findings in Sec. 5.2
(Tab. 1) and indicate the generalization of the proposed
setting across several black-box outputs. Concretely, ef-
ficiency improvements on set size are consistently main-
tained on CLIP ResNet-101 and CLIP ViT-B/32, with such
a figure improved by nearly 20%. Also, Conf-OT is effec-
tive on larger backbones such as CLIP ViT-L/14 or Meta-
CLIP ViT-H/14, whose initial performance is also notably
better. In this case, relative performance improvements of
nearly 15% are observed.

G.2. Results per dataset
Performances are detailed for each backbone individually.
Also, we split the five ImageNet shifts and 10 fine-grained
tasks into different Tables to improve readability. First,
Tab. 9 and 10 introduce the results for CLIP ResNet-50, and
Tab. 11 and 12 do the same for CLIP ResNet-101. Tab. 13,
14, and 15, 16 introduce the results for both CLIP ViT-B
backbones: ViT-B/32 and ViT-B/16, respectively. Finally,
Tab. 17 and 18 present the results for ViT-L/14. Comple-
mentary, Tab. 19, 20, 21, and 22 depict the detailed results
for MetaCLIP backbones across all datasets.

G.3. Additional results for transductive baselines
Tab. 8 introduces the performance obtained using TIM [5]
and TransCLIP [73] baselines for additional datasets, i.e.,
CLIP ResNet-50, and more demanding error rates, i.e.,

α = 0.05. These results complement the observations in
Sec. 5.2 (Tab. 8). They showcase that Conf-OT consistently
performs better across various scenarios, especially under
demanding premises of low error rates (α = 0.05). Re-
garding TIMKL(m̂||uK), we recall that this option provided
better set efficiency compared to Conf-OT using APS in the
narrower scenario introduced in Tab. 8. Nevertheless, these
supplementary results show this trend is not generalizable
across additional backbones and coverage levels. For ex-
ample, for ResNet-50 in Tab. 8, TIMKL(m̂||uK) combined
with APS produces set sizes nearly 15% larger than Conf-
OT, for both α = 0.10, and α = 0.05.

G.4. Further exploration on accuracy against set
size improvement

In the main manuscript, we questioned whether the im-
provements provided by the proposed transductive ap-
proach were due solely to better discriminative performance
(Sec. 5.3, Fig. 3). In this section, we provided additional
observations on the discriminative and conformal inference
improvements provided by Conf-OT.
Relative improvements across datasets. We provide in
Fig. 4 an extended version of Fig. 3(a). These visualiza-
tions indicate a limited correlation between the accuracy
improvement and set size decreasing for all non-conformity
scores employed, both adaptive and non-adaptive measures,
i.e., LAC, APS, and RAPS.

(a) LAC [39]

(b) APS [51] (c) RAPS [2]

Figure 4. Correlation accross datasets of accuracy vs. set
size change (∆) increment using Conf-OT, with popular non-
conformal scores, i.e., LAC [39], APS [51], and RAPS [2]. Re-
sults using CLIP ViT-B/16 on 15 datasets with α = 0.10. These
results complement Fig. 3 in the main manuscript.

Effect of temperature scaling in adaptive non-
conformity scores. In the main manuscript (Sec. 5.3),



we explored the positive effect of increasing confidence in
prediction for adaptive methods using temperature scaling,
as observed in [69]. We now recover this argument to
explore how this affects accuracy, showcased in Fig. 5.
Such results indicate that, if decreasing the temperature
scaling value τ , the efficiency improvement comes at the
cost of an accuracy detriment when using Conf-OT. This,
again, suggests a disjoint behaviour between discriminative
and conformal figures of merit.

(a) APS [51] (b) RAPS [2]

Figure 5. Relation of accuracy against set size improvement on
adaptive scores, i.e., APS [51] (a) and RAPS [2] (b), resulting
from modifying the distribution sharpness, via temperature scal-
ing. Results using ViT-B/16 on 15 datasets with α = 0.10. These
results complement Fig. 3 in the main manuscript.

G.5. Conf-OT hyper-parameter studies
Fig. 6 presents the convergence of the Sinkhorn algorithm
in Conf-OT regarding the number of iterations by measur-
ing set size. These results demonstrate that such algorithms
reach a satisfactory convergence after three iterations. This
observation is consistent with typical values employed on
prior works using Sinkhorn optimal transport in vision tasks
[7]. Thus, we kept T = 3 across all experiments and con-
figurations in our experiments.

Figure 6. Study on the number of iterations of Conf-OT. Re-
sults using CLIP ViT-B/16 on 15 datasets. Dashed lines indicate
the chosen value for this hyper-parameter, i.e. T = 3 repetitions.

G.6. Details on computational efficiency
The following section includes additional details on the
hardware employed for our experiments and the computa-
tional efficiency of Conf-OT.

Hardware. All our experiments were conducted on a
single GeForce RTX 3060. We extracted the vision fea-
tures and class text-driven prototypes using GPU resources.
However, we evaluated Conf-OT using solely CPU hard-
ware. If available, Conf-OT requires less than 0.7 Gb of
memory in a commodity GPU for the most demanding
datasets, such as ImageNet. In this scenario, Sinkhorn opti-
mal transport computation speed-up in a factor ×10.

Runtime analysis in Conf-OT. Fig. 7 provides detailed
runtimes for each of the stages in Conf-OT. Note that
the baseline time refers to the feature extraction runtime
when extracting feature embedding from the vision encoder
(nearly 4 minutes). We recall that Conf-OT is equipped with
three stages: i) transfer learning trough transductive opti-
mal transport, ii) searching the 1 − α quantile from a non-
conformity score distribution in the calibration set, and iii)
inference on the query samples, which consists of produc-
ing the output sets. On average, across 15 tasks, these three
stages require less than 0.75 seconds for the full dataset.
The results showcase that the latest step involves the main
part of the runtime, which is also required if not following
our transfer learning pipeline. On the other hand, threshold
computing requires negligible computing times, and the op-
timal transport adaptation consumes nearly 1/3 of the whole
runtime. These results showcase that Conf-OT is extremely
efficient, compensating for the necessity of optimizing the
optimal transport problem and finding the non-conformity
score threshold for each query batch, e.g., if the inference is
carried out in small testing batches of 8 images, the whole
Conf-OT procedure should be computed for each batch.
Also, it is worth mentioning that these processing times are
orders of magnitude smaller than the feature extraction pro-
cess. Also, Conf-OT runtimes can be notably decreased us-
ing specialized hardware, such as GPUs, for the Sinkhorn
algorithm.

LAC APS RAPS
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Figure 7. Runtimes of Conf-OT. The baseline (4 minutes) indi-
cates feature extraction runtime. The required OT adaptation times
are negligible (≤ 10 ms) compared to the baseline and inference
speed. “ŝ” indicates finding the conformity score from calibration
data. Average results using CLIP ViT-B/16 on 15 datasets.



G.7. Details on data efficiency
The proposed Conf-OT is transductive. That means that ac-
cess to both calibration and test data during inference is re-
quired to perform the transfer learning adaptation between
source and target domains. In the following, we explore
how sensitive Conf-OT is in two measures: i) calibration
data requirements, and ii) size of the input query batch.

Method Ratio α = 0.10

Calib - Test Top-1↑ Cov. Size↓ CCV↓

LAC

0.1 - 0.9 63.8 0.903 7.71 9.65
0.2 - 0.8 63.8 0.899 5.56 9.80
0.5 - 0.5 63.8 0.899 5.52 10.37
0.8 - 0.2 63.8 0.899 5.56 11.70

Conf-OT+LAC

0.1 - 0.9 66.6 0.901 4.53 8.73
0.2 - 0.8 66.7 0.899 4.39 8.86
0.5 - 0.5 66.7 0.900 4.40 9.48
0.8 - 0.2 66.7 0.899 4.41 11.12

APS

0.1 - 0.9 63.8 0.901 9.96 7.55
0.2 - 0.8 63.8 0.900 9.94 7.65
0.5 - 0.5 63.8 0.900 9.87 8.39
0.8 - 0.2 63.8 0.900 9.88 10.32

Conf-OT+APS

0.1 - 0.9 66.6 0.902 7.7 6.44
0.2 - 0.8 66.7 0.901 7.64 6.59
0.5 - 0.5 66.7 0.899 7.64 7.44
0.8 - 0.2 66.7 0.900 7.67 9.62

RAPS

0.1 - 0.9 63.8 0.900 8.12 7.67
0.2 - 0.8 63.8 0.900 8.10 7.74
0.5 - 0.5 63.8 0.900 8.12 8.50
0.8 - 0.2 63.8 0.900 8.10 10.37

Conf-OT+RAPS

0.1 - 0.9 66.6 0.901 6.73 6.73
0.2 - 0.8 66.7 0.900 6.70 6.64
0.5 - 0.5 66.7 0.900 6.68 7.48
0.8 - 0.2 66.7 0.899 6.70 9.69

Table 5. Robustness to different data ratios. Results using CLIP
ViT-B/16 on 15 datasets averaged across 20 seeds.

Method M α = 0.10

Top-1↑ Cov. Size↓ CCV↓

LAC - 63.8 0.899 5.52 10.37
w/ Conf-OT Full 66.7 0.900 4.40 9.48
w/ Conf-OT 32 66.5 0.898 4.43 9.66
w/ Conf-OT 16 66.5 0.898 4.43 9.67
w/ Conf-OT 8 66.6 0.898 4.42 9.67

APS - 63.8 0.900 9.87 8.39
w/ Conf-OT Full 66.7 0.899 7.64 7.44
w/ Conf-OT 32 66.5 0.900 7.68 7.51
w/ Conf-OT 16 66.5 0.900 7.68 7.52
w/ Conf-OT 8 66.6 0.900 7.67 7.54

RAPS - 63.8 0.900 8.12 8.50
w/ Conf-OT Full 66.7 0.899 6.70 7.48
w/ Conf-OT 32 66.5 0.900 6.72 7.58
w/ Conf-OT 16 66.5 0.900 6.71 7.57
w/ Conf-OT 8 66.6 0.900 6.72 7.57

Table 6. Robustness to small query batches. Results using CLIP
ViT-B/16 on 15 datasets averaged across 20 seeds. “M” indicates
the size of the query batch for Conf-OT. Metrics are extracted by
concatenating the predicted sets on the whole test subset.

Robustness to calibration data. Tab. 5 provides the re-
sults of base non-conformal scores over CLIP’s zero-shot

predictions and atop our Conf-OT method for different cal-
ibration/testing data ratios. Results demonstrate a constant
performance regarding the efficiency improvements derived
from Conf-OT across all these settings and non-conformity
scores, even in challenging scenarios such as using solely
10% of data for calibration.
Robustness to small query sets. Tab. 6 contains the results
when inference in Conf-OT is performed using extremely
small mini-batches of images, e.g., 8, 16, or 32 images, se-
quentially. The figures of merit show consistent efficiency
and class-conditional coverage improvements w.r.t. the base
version of each non-conformal score, at the same level as
the results observed when using the full batch (all testing
samples) simultaneously, as in the main manuscript. As ex-
pected, the total runtimes for the whole dataset increase if
small mini-batches are used since Conf-OT requires opti-
mization for each batch.



Method α = 0.10 α = 0.05

Top-1↑ Cov. Size↓ CCV↓ Cov. Size↓ CCV↓

C
L

IP
R

es
N

et
-1

01

LAC [39] 56.7 0.899 9.1 10.31 0.950 16.43 6.14
w/ Conf-OT 59.8+3.1 0.900 7.22-1.9 9.48-0.8 0.950 12.99-3.4 5.75-0.4

APS [51] 56.7 0.900 14.97 8.67 0.950 24.76 5.55
w/ Conf-OT 59.8+3.1 0.900 11.4-3.6 7.74-0.9 0.950 18.69-6.1 5.15-0.4

RAPS [2] 56.7 0.901 12.12 8.79 0.950 19.12 5.60
w/ Conf-OT 59.8+3.1 0.900 9.93-2.2 7.82-1.0 0.950 15.27-3.9 5.23-0.4

C
L

IP
V

iT
-B

/3
2

LAC [39] 58.7 0.900 8.20 10.40 0.950 15.21 6.12
w/ Conf-OT 61.3+2.6 0.899 6.63-1.6 9.39-1.0 0.950 12.05-3.2 5.76-0.4

APS [51] 58.7 0.901 13.55 8.59 0.950 22.76 5.54
w/ Conf-OT 61.3+2.6 0.900 10.69-2.9 7.59-1.0 0.950 17.49-5.3 5.05-0.5

RAPS [2] 58.7 0.901 11.00 8.70 0.950 18.09 5.61
w/ Conf-OT 61.3+2.6 0.899 9.25-1.75 7.66-1.0 0.950 14.10-4.0 5.13-0.5
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LAC [39] 69.8 0.900 3.79 10.04 0.950 7.08 5.92
w/ Conf-OT 71.8+2.0 0.900 3.06-0.7 9.47-0.6 0.950 5.57-1.5 5.63-0.3

APS [51] 69.8 0.900 7.28 7.76 0.949 12.4 5.13
w/ Conf-OT 71.8+2.0 0.900 5.58-1.7 7.12-0.6 0.950 9.80-2.6 4.85-0.3

RAPS [2] 69.8 0.900 6.03 7.83 0.950 9.21 5.16
w/ Conf-OT 71.8+2.0 0.900 5.11-0.9 7.13-0.7 0.950 7.71-1.5 4.90-0.3
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LAC [39] 72.6 0.900 2.93 10.34 0.950 5.36 6.03
w/ Conf-OT 74.7+2.1 0.900 2.5-0.4 9.97-0.4 0.949 4.49-0.9 5.93-0.1

APS [51] 72.6 0.900 6.40 7.80 0.949 11.27 5.21
w/ Conf-OT 74.7+2.1 0.900 4.87-1.5 6.98-0.8 0.949 8.39-2.9 4.84-0.4

RAPS [2] 72.6 0.900 4.93 7.87 0.949 7.31 5.27
w/ Conf-OT 74.7+2.1 0.900 4.13-0.8 7.01-0.9 0.950 6.22-1.1 4.89-0.4
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LAC [39] 79.4 0.900 1.79 10.91 0.950 2.98 6.17
w/ Conf-OT 81.1+1.7 0.900 1.59-0.2 10.07-0.8 0.950 2.53-0.4 5.92-0.3

APS [51] 79.4 0.900 4.45 7.48 0.950 7.70 4.97
w/ Conf-OT 81.1+1.7 0.899 3.47-1.0 6.60-0.9 0.949 6.00-1.7 4.55-0.4

RAPS [2] 79.4 0.900 3.45 7.53 0.950 4.90 5.01
w/ Conf-OT 81.1+1.7 0.899 2.93-0.5 6.61-0.9 0.950 4.30-0.6 4.57-0.4

Table 7. Performance for additional CLIP and MetaCLIP backbones. Conf-OT performance above popular conformal inference
methods such as LAC [39], APS [51], and RAPS [2]. Average performance across 15 datasets. We repeat each experiment 20 times. “↓”
indicates smaller values are better. Bold numbers are superior results. These results complement Tab. 1 in the main manuscript.



Method α = 0.10 α = 0.05

Top-1↑ Cov. Size↓ CCV↓ Cov. Size↓ CCV↓
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LAC [39] 54.7 0.900 10.77 9.82 0.950 19.22 5.91
TIMKL(m̂||uK ) [5] 55.7+1.0 0.899 14.45+3.7 9.69-0.1 0.950 26.31+7.1 5.70-0.2
TIMKL(m̂||m) [5] 56.4+1.7 0.899 13.63+2.9 12.02+2.2 0.950 24.88+5.7 6.03+0.1
TransCLIP [73] 55.7+1.0 0.861 7.83-2.9 12.20+2.4 0.881 8.81-10.4 11.03+5.1
Conf-OT 57.3+2.6 0.900 8.61-2.1 9.15-0.6 0.951 15.53-3.6 5.61-0.3

APS [51] 54.7 0.900 16.35 8.36 0.950 26.50 5.34
TIMKL(m̂||uK ) [5] 55.7+1.0 0.900 13.33-3.0 8.64+0.3 0.950 24.73-1.8 5.37+0.0
TIMKL(m̂||m) [5] 56.4+1.7 0.900 13.26-3.1 8.69+0.3 0.950 24.09-2.4 5.47+0.1
TransCLIP [73] 55.7+1.0 0.873 39.05+22.7 11.15+2.8 0.899 46.78+20.3 9.41+4.1
Conf-OT 57.3+2.6 0.900 12.94-3.4 7.64-0.7 0.950 20.96-5.5 5.03-0.3

RAPS [2] 54.7 0.900 13.37 8.46 0.950 22.06 5.44
TIMKL(m̂||uK ) [5] 55.7+1.0 0.900 13.18-0.2 8.64+0.2 0.950 24.54+2.5 5.38-0.1
TIMKL(m̂||m) [5] 56.4+1.7 0.900 12.99-0.4 8.71+0.3 0.950 23.59+1.5 5.51+0.1
TransCLIP [73] 55.7+1.0 0.900 13.68+0.3 9.94+1.5 0.949 28.16+6.1 6.03+0.6
Conf-OT 57.3+2.6 0.900 11.17-2.2 7.72-0.7 0.950 17.24-4.8 5.19-0.2
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LAC [39] 63.8 0.899 5.52 10.37 0.950 10.24 6.14
TIMKL(m̂||uK ) [5] 64.7+0.9 0.899 8.30+2.8 10.41+0.0 0.950 15.89+5.7 6.03-0.1
TIMKL(m̂||m) [5] 65.0+1.2 0.898 7.73+2.2 10.89+0.5 0.950 14.68+4.4 6.40+0.3
TransCLIP [73] 65.1+1.3 0.892 5.76+0.2 11.02+0.7 0.921 7.02-3.2 8.31+2.2
Conf-OT 66.7+2.9 0.900 4.40-1.1 9.48-0.8 0.949 7.99-2.2 5.80-0.3

APS [51] 63.8 0.900 9.87 8.39 0.950 16.92 5.51
TIMKL(m̂||uK ) [5] 64.7+0.9 0.900 7.24-2.6 9.32+0.9 0.950 14.03-2.9 5.88+0.4
TIMKL(m̂||m) [5] 65.0+1.2 0.900 7.82-2.1 9.38+1.0 0.950 14.34-2.6 6.03+0.5
TransCLIP [73] 65.1+1.3 0.892 8.27-1.6 11.50+3.1 0.931 38.86+21.9 7.47+2.0
Conf-OT 66.7+2.9 0.899 7.64-2.2 7.44-0.9 0.949 12.58-4.3 5.09-0.4

RAPS [2] 63.8 0.900 8.12 8.50 0.950 12.66 5.52
TIMKL(m̂||uK ) [5] 64.7+0.9 0.900 7.18-0.9 9.32+0.8 0.950 13.92+1.3 5.99+0.5
TIMKL(m̂||m) [5] 65.0+1.2 0.900 7.68-0.4 9.42+0.9 0.950 14.11+1.5 6.04+0.5
TransCLIP [73] 65.1+1.3 0.899 7.17-1.0 10.20+1.7 0.949 15.26+2.6 6.31+0.8
Conf-OT 66.7+2.9 0.900 6.68-1.4 7.48-1.0 0.949 10.11-2.5 5.16-0.3

Table 8. Comparison of transductive baselines for additional CLIP backbones. Average performance across 15 datasets. We repeat
each experiment 20 times. “↓” indicates smaller values are better. Bold numbers are superior results. These results complement Tab. 2 in
the main manuscript. Grayish marginal coverage (“Cov.”) indicates an unsatisfied error rate, usually seen in TransCLIP.



Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

SUN397
LAC [39] 58.7 0.899 4.28 8.90 0.950 8.42 5.44

w/ Conf-OT 62.0 0.899 3.62 7.64 0.951 6.77 4.83
APS [51] 58.7 0.901 8.98 7.59 0.949 16.16 5.01

w/ Conf-OT 62.0 0.900 7.05 6.60 0.950 12.20 4.46
RAPS [2] 58.7 0.902 8.16 7.59 0.949 13.63 5.06

w/ Conf-OT 62.0 0.900 6.57 6.62 0.951 10.70 4.53
FGVCAircraft
LAC [39] 16.9 0.899 27.27 12.09 0.949 37.47 7.65

w/ Conf-OT 19.4 0.900 23.13 9.87 0.953 31.94 6.02
APS [51] 16.9 0.898 28.26 11.95 0.950 38.14 7.44

w/ Conf-OT 19.4 0.897 24.18 9.40 0.951 31.53 5.81
RAPS [2] 16.9 0.898 27.77 11.78 0.949 39.08 7.58

w/ Conf-OT 19.4 0.900 23.81 9.37 0.950 31.24 6.05
EuroSAT
LAC [39] 36.1 0.900 4.74 8.75 0.952 5.84 4.43

w/ Conf-OT 43.4 0.899 4.03 7.97 0.951 5.38 4.24
APS [51] 36.1 0.901 5.03 6.87 0.952 5.97 3.54

w/ Conf-OT 43.4 0.901 4.61 6.26 0.952 5.76 3.59
RAPS [2] 36.1 0.900 5.02 6.95 0.953 5.98 3.57

w/ Conf-OT 43.4 0.900 4.59 6.29 0.951 5.74 3.61
StanfordCars
LAC [39] 55.8 0.900 3.85 10.05 0.953 6.26 6.05

w/ Conf-OT 59.0 0.902 3.36 7.99 0.953 5.31 5.05
APS [51] 55.8 0.899 5.37 7.95 0.951 7.75 5.22

w/ Conf-OT 59.0 0.901 4.66 6.47 0.951 6.76 4.55
RAPS [2] 55.8 0.900 5.24 7.97 0.951 7.46 5.28

w/ Conf-OT 59.0 0.900 4.58 6.48 0.953 6.57 4.54
Food101
LAC [39] 77.3 0.899 1.75 5.08 0.949 3.07 2.90

w/ Conf-OT 77.2 0.899 1.78 4.81 0.950 3.25 2.74
APS [51] 77.3 0.899 3.20 2.77 0.950 4.96 2.07

w/ Conf-OT 77.2 0.900 3.28 2.44 0.951 5.11 1.85
RAPS [2] 77.3 0.899 3.09 2.81 0.950 4.63 2.08

w/ Conf-OT 77.2 0.900 3.17 2.44 0.951 4.84 1.91
OxfordPets
LAC [39] 85.7 0.901 1.11 8.00 0.950 1.38 4.37

w/ Conf-OT 86.3 0.897 1.09 6.73 0.949 1.35 3.73
APS [51] 85.7 0.904 1.56 3.86 0.952 1.94 2.71

w/ Conf-OT 86.3 0.905 1.58 4.11 0.951 1.95 2.82
RAPS [2] 85.7 0.904 1.55 3.87 0.952 1.92 2.76

w/ Conf-OT 86.3 0.905 1.57 4.09 0.951 1.93 2.82
Flowers102
LAC [39] 66.2 0.902 7.47 15.16 0.952 16.06 8.07

w/ Conf-OT 67.2 0.904 5.23 15.09 0.952 9.94 8.32
APS [51] 66.2 0.903 8.55 14.40 0.951 17.31 7.79

w/ Conf-OT 67.2 0.901 6.07 13.02 0.951 10.59 7.87
RAPS [2] 66.2 0.903 8.23 14.75 0.951 17.98 8.06

w/ Conf-OT 67.2 0.901 5.91 13.25 0.952 10.63 8.21
Caltech101
LAC [39] 85.7 0.903 1.12 11.89 0.950 1.38 7.91

w/ Conf-OT 87.4 0.899 1.06 12.35 0.950 1.35 8.26
APS [51] 85.7 0.891 3.12 9.43 0.943 4.56 6.87

w/ Conf-OT 87.4 0.891 1.92 8.63 0.946 2.66 6.44
RAPS [2] 85.7 0.892 2.91 9.42 0.944 4.03 7.00

w/ Conf-OT 87.4 0.892 1.88 8.54 0.945 2.52 6.41
DTD
LAC [39] 42.9 0.897 11.95 10.44 0.948 18.66 6.40

w/ Conf-OT 45.5 0.898 9.29 8.53 0.948 14.56 5.59
APS [51] 42.9 0.900 13.20 9.48 0.950 19.53 6.08

w/ Conf-OT 45.5 0.902 10.19 8.40 0.950 15.17 5.50
RAPS [2] 42.9 0.899 12.91 9.61 0.951 19.34 6.32

w/ Conf-OT 45.5 0.901 10.09 8.44 0.951 15.15 5.59
UCF101
LAC [39] 61.8 0.902 4.34 11.55 0.951 8.08 6.94

w/ Conf-OT 65.6 0.905 3.64 10.96 0.953 6.54 6.49
APS [51] 61.8 0.904 7.19 9.74 0.952 11.26 6.13

w/ Conf-OT 65.6 0.903 6.00 8.23 0.951 9.12 5.37
RAPS [2] 61.8 0.903 6.87 9.79 0.952 10.53 6.38

w/ Conf-OT 65.6 0.902 5.85 8.38 0.952 8.65 5.48

Table 9. Results on fine-grained tasks with CLIP ResNet-50.

Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

ImageNet
LAC [39] 60.3 0.900 5.18 8.25 0.950 10.74 5.03

w/ Conf-OT 61.6 0.901 4.81 7.63 0.950 10.18 4.78
APS [51] 60.3 0.900 15.06 6.82 0.950 29.62 4.66

w/ Conf-OT 61.6 0.900 12.38 6.32 0.950 23.58 4.30
RAPS [2] 60.3 0.899 11.23 6.89 0.950 18.24 4.71

w/ Conf-OT 61.6 0.900 10.05 6.34 0.951 16.74 4.40
ImageNet-A
LAC [39] 23.6 0.899 31.18 8.87 0.950 52.70 6.28

w/ Conf-OT 27.7 0.897 25.90 11.04 0.948 42.92 7.40
APS [51] 23.6 0.898 41.63 8.31 0.950 62.62 6.06

w/ Conf-OT 27.7 0.898 34.30 10.25 0.949 51.99 7.12
RAPS [2] 23.6 0.900 31.53 8.77 0.950 47.73 6.05

w/ Conf-OT 27.7 0.898 27.56 10.79 0.947 39.87 7.94
ImageNet-V2
LAC [39] 53.5 0.900 9.21 12.60 0.951 20.06 7.84

w/ Conf-OT 54.7 0.903 8.55 12.53 0.952 20.08 7.73
APS [51] 53.5 0.902 25.22 12.39 0.951 47.96 7.84

w/ Conf-OT 54.7 0.900 19.49 12.19 0.951 37.71 7.78
RAPS [2] 53.5 0.901 17.35 12.42 0.953 27.55 7.75

w/ Conf-OT 54.7 0.902 15.34 12.18 0.952 25.17 7.75
ImageNet-R
LAC [39] 60.1 0.901 7.38 5.77 0.950 15.31 3.41

w/ Conf-OT 62.9 0.901 6.25 5.71 0.951 13.41 3.65
APS [51] 60.1 0.901 12.44 4.36 0.950 20.51 2.92

w/ Conf-OT 62.9 0.901 11.05 4.60 0.951 18.52 3.04
RAPS [2] 60.1 0.899 11.26 4.50 0.950 17.87 3.06

w/ Conf-OT 62.9 0.902 10.15 4.71 0.950 16.19 3.33
ImageNet-Sketch
LAC [39] 35.3 0.900 40.68 9.93 0.950 82.82 5.96

w/ Conf-OT 39.3 0.900 27.42 8.46 0.951 59.96 5.30
APS [51] 35.3 0.901 66.42 9.45 0.950 109.28 5.79

w/ Conf-OT 39.3 0.901 47.41 7.69 0.951 81.79 4.97
RAPS [2] 35.3 0.900 47.36 9.78 0.950 94.91 5.91

w/ Conf-OT 39.3 0.901 36.46 7.91 0.950 62.64 5.31

Table 10. Results on ImageNet shifts using CLIP ResNet-50.



Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

SUN397
LAC [39] 58.8 0.901 4.43 9.22 0.951 8.80 5.57

w/ Conf-OT 62.2 0.900 3.46 7.55 0.951 6.67 4.95
APS [51] 58.8 0.901 9.93 8.04 0.950 18.80 5.14

w/ Conf-OT 62.2 0.900 7.04 6.56 0.950 12.39 4.44
RAPS [2] 58.8 0.901 8.88 8.09 0.950 15.01 5.22

w/ Conf-OT 62.2 0.900 6.55 6.55 0.951 10.92 4.48
FGVCAircraft
LAC [39] 17.8 0.898 26.88 13.15 0.949 42.14 8.45

w/ Conf-OT 20.1 0.896 22.14 11.28 0.950 31.98 6.84
APS [51] 17.8 0.899 28.34 13.50 0.949 43.41 8.54

w/ Conf-OT 20.1 0.899 22.76 10.75 0.949 31.90 6.99
RAPS [2] 17.8 0.900 26.87 13.25 0.949 42.22 8.25

w/ Conf-OT 20.1 0.896 22.22 10.75 0.950 32.86 6.64
EuroSAT
LAC [39] 32.9 0.899 6.99 10.24 0.950 7.71 5.46

w/ Conf-OT 38.4 0.899 5.55 6.82 0.951 6.60 3.62
APS [51] 32.9 0.900 6.93 10.03 0.949 7.84 5.69

w/ Conf-OT 38.4 0.899 5.55 6.96 0.951 6.69 3.97
RAPS [2] 32.9 0.899 6.92 10.15 0.949 7.89 5.74

w/ Conf-OT 38.4 0.900 5.55 7.02 0.951 6.71 3.98
StanfordCars
LAC [39] 63.2 0.900 2.64 9.54 0.951 3.94 5.87

w/ Conf-OT 65.6 0.900 2.48 8.61 0.950 3.65 5.24
APS [51] 63.2 0.900 3.85 8.22 0.950 5.41 5.41

w/ Conf-OT 65.6 0.901 3.53 6.64 0.951 4.97 4.66
RAPS [2] 63.2 0.899 3.77 8.17 0.950 5.22 5.42

w/ Conf-OT 65.6 0.901 3.48 6.66 0.951 4.82 4.70
Food101
LAC [39] 80.6 0.899 1.45 4.99 0.949 2.31 2.89

w/ Conf-OT 80.6 0.899 1.46 4.69 0.950 2.42 2.77
APS [51] 80.6 0.900 2.72 2.73 0.949 4.13 1.96

w/ Conf-OT 80.6 0.900 2.79 2.46 0.950 4.25 1.77
RAPS [2] 80.6 0.900 2.64 2.76 0.950 3.89 2.01

w/ Conf-OT 80.6 0.900 2.71 2.46 0.950 3.97 1.81
OxfordPets
LAC [39] 86.9 0.900 1.09 9.32 0.949 1.42 5.50

w/ Conf-OT 87.5 0.899 1.06 7.18 0.952 1.27 3.73
APS [51] 86.9 0.907 1.51 4.42 0.950 1.81 2.98

w/ Conf-OT 87.5 0.905 1.48 3.73 0.952 1.80 2.97
RAPS [2] 86.9 0.907 1.51 4.51 0.950 1.80 2.99

w/ Conf-OT 87.5 0.905 1.47 3.76 0.952 1.79 2.93
Flowers102
LAC [39] 64.5 0.901 5.55 15.33 0.950 15.16 8.18

w/ Conf-OT 69.8 0.903 4.00 15.86 0.951 7.85 8.95
APS [51] 64.5 0.902 7.31 13.64 0.951 15.01 8.00

w/ Conf-OT 69.8 0.904 5.19 12.92 0.952 8.23 8.21
RAPS [2] 64.5 0.902 7.09 13.84 0.951 15.85 8.10

w/ Conf-OT 69.8 0.906 5.08 13.13 0.951 8.28 8.47
Caltech101
LAC [39] 89.9 0.895 0.99 13.08 0.948 1.16 8.21

w/ Conf-OT 91.9 0.897 0.94 13.39 0.950 1.11 8.52
APS [51] 89.9 0.895 2.71 9.01 0.946 4.13 6.80

w/ Conf-OT 91.9 0.891 1.56 8.68 0.946 2.10 6.49
RAPS [2] 89.9 0.895 2.52 9.01 0.946 3.61 6.76

w/ Conf-OT 91.9 0.893 1.53 8.74 0.946 2.01 6.48
DTD
LAC [39] 36.9 0.900 13.76 10.50 0.953 18.31 5.81

w/ Conf-OT 44.4 0.899 11.29 9.94 0.952 15.79 5.54
APS [51] 36.9 0.900 15.05 9.42 0.953 19.16 5.66

w/ Conf-OT 44.4 0.898 12.07 8.99 0.953 16.73 5.14
RAPS [2] 36.9 0.902 14.64 9.75 0.951 18.57 5.63

w/ Conf-OT 44.4 0.901 11.93 9.14 0.953 16.48 5.15
UCF101
LAC [39] 61.0 0.899 3.98 12.22 0.949 7.02 7.31

w/ Conf-OT 65.9 0.904 3.12 11.01 0.950 5.47 6.45
APS [51] 61.0 0.901 7.26 9.05 0.952 11.07 5.79

w/ Conf-OT 65.9 0.902 5.65 7.42 0.952 8.92 4.92
RAPS [2] 61.0 0.902 6.77 9.31 0.952 10.16 5.84

w/ Conf-OT 65.9 0.901 5.45 7.50 0.951 8.15 5.03

Table 11. Results on fine-grained tasks with CLIP ResNet-101.

Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

ImageNet
LAC [39] 62.6 0.900 4.32 8.56 0.950 8.98 5.13

w/ Conf-OT 64.1 0.900 3.98 7.85 0.950 8.28 4.72
APS [51] 62.6 0.900 14.97 6.74 0.950 29.28 4.51

w/ Conf-OT 64.1 0.901 11.61 6.35 0.950 22.40 4.29
RAPS [2] 62.6 0.901 10.87 6.84 0.950 17.41 4.63

w/ Conf-OT 64.1 0.900 9.37 6.37 0.950 15.46 4.40
ImageNet-A
LAC [39] 29.9 0.898 25.09 9.87 0.949 41.49 6.22

w/ Conf-OT 34.3 0.897 20.50 11.07 0.947 35.84 8.25
APS [51] 29.9 0.901 35.24 9.08 0.948 53.35 6.11

w/ Conf-OT 34.3 0.897 28.38 10.67 0.947 45.65 7.73
RAPS [2] 29.9 0.899 27.02 9.49 0.949 39.70 6.41

w/ Conf-OT 34.3 0.897 23.95 10.85 0.948 35.22 8.17
ImageNet-V2
LAC [39] 56.3 0.903 7.74 12.63 0.951 18.72 7.97

w/ Conf-OT 57.0 0.901 7.04 12.53 0.951 17.55 7.85
APS [51] 56.3 0.901 24.30 12.52 0.951 48.33 7.89

w/ Conf-OT 57.0 0.901 18.66 12.34 0.949 36.51 7.93
RAPS [2] 56.3 0.902 16.85 12.49 0.951 26.83 7.93

w/ Conf-OT 57.0 0.901 14.48 12.43 0.949 24.24 7.97
ImageNet-R
LAC [39] 67.8 0.899 4.14 5.86 0.950 9.19 3.50

w/ Conf-OT 69.8 0.900 3.65 5.89 0.950 8.48 3.61
APS [51] 67.8 0.900 9.10 4.23 0.949 15.24 2.99

w/ Conf-OT 69.8 0.899 8.48 4.21 0.950 14.04 2.91
RAPS [2] 67.8 0.901 8.18 4.31 0.949 12.77 3.06

w/ Conf-OT 69.8 0.900 7.70 4.27 0.950 12.09 3.08
ImageNet-Sketch
LAC [39] 40.6 0.899 27.46 10.15 0.949 60.14 6.11

w/ Conf-OT 44.9 0.900 17.56 8.48 0.950 41.90 5.27
APS [51] 40.6 0.900 55.28 9.49 0.950 94.43 5.78

w/ Conf-OT 44.9 0.900 36.20 7.49 0.950 63.07 4.91
RAPS [2] 40.6 0.900 37.22 9.83 0.950 65.93 6.06

w/ Conf-OT 44.9 0.901 27.49 7.63 0.950 46.02 5.20

Table 12. Results on ImageNet shifts with CLIP ResNet-101.



Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

SUN397
LAC [39] 61.9 0.900 3.64 9.10 0.949 6.55 5.54

w/ Conf-OT 64.8 0.898 3.02 7.66 0.951 5.36 4.77
APS [51] 61.9 0.900 7.62 7.30 0.950 13.52 4.85

w/ Conf-OT 64.8 0.901 5.92 6.27 0.949 9.75 4.28
RAPS [2] 61.9 0.900 6.85 7.36 0.949 11.12 4.87

w/ Conf-OT 64.8 0.901 5.55 6.32 0.949 8.58 4.30
FGVCAircraft
LAC [39] 18.8 0.897 23.31 13.24 0.947 36.04 8.52

w/ Conf-OT 21.9 0.896 19.98 10.87 0.950 27.64 6.61
APS [51] 18.8 0.898 24.28 13.17 0.948 36.27 8.53

w/ Conf-OT 21.9 0.894 20.75 10.43 0.948 28.54 6.53
RAPS [2] 18.8 0.899 23.40 13.07 0.946 39.45 8.27

w/ Conf-OT 21.9 0.895 20.50 10.37 0.951 28.46 6.50
EuroSAT
LAC [39] 45.2 0.899 4.97 12.26 0.949 6.02 6.47

w/ Conf-OT 52.0 0.900 3.40 7.056 0.950 4.54 4.66
APS [51] 45.2 0.900 5.08 11.02 0.949 6.18 6.27

w/ Conf-OT 52.0 0.900 3.93 6.57 0.951 5.02 3.81
RAPS [2] 45.2 0.900 5.07 11.15 0.949 6.22 6.37

w/ Conf-OT 52.0 0.899 3.91 6.64 0.950 5.01 3.84
StanfordCars
LAC [39] 59.9 0.897 3.27 10.29 0.949 4.98 6.11

w/ Conf-OT 61.7 0.898 2.96 8.79 0.949 4.32 5.33
APS [51] 59.9 0.900 4.45 8.03 0.951 6.31 5.27

w/ Conf-OT 61.7 0.901 4.07 6.80 0.951 5.79 4.52
RAPS [2] 59.9 0.900 4.40 8.04 0.951 6.14 5.35

w/ Conf-OT 61.7 0.900 4.00 6.81 0.950 5.60 4.58
Food101
LAC [39] 80.4 0.899 1.47 5.32 0.950 2.37 2.93

w/ Conf-OT 79.8 0.898 1.52 4.84 0.950 2.58 2.72
APS [51] 80.4 0.900 2.62 2.78 0.950 4.00 1.95

w/ Conf-OT 79.8 0.899 2.76 2.64 0.950 4.26 1.89
RAPS [2] 80.4 0.900 2.54 2.80 0.950 3.73 1.97

w/ Conf-OT 79.8 0.899 2.68 2.68 0.950 3.97 1.93
OxfordPets
LAC [39] 87.4 0.902 1.06 8.94 0.951 1.33 4.91

w/ Conf-OT 88.1 0.899 1.04 6.93 0.951 1.26 3.70
APS [51] 87.4 0.91 1.47 4.11 0.956 1.80 2.79

w/ Conf-OT 88.1 0.904 1.45 3.71 0.952 1.77 2.71
RAPS [2] 87.4 0.911 1.46 4.15 0.955 1.78 2.78

w/ Conf-OT 88.1 0.905 1.44 3.64 0.952 1.76 2.74
Flowers102
LAC [39] 66.5 0.900 5.43 15.75 0.951 16.5 8.43

w/ Conf-OT 69.8 0.899 3.53 15.65 0.953 8.74 8.86
APS [51] 66.5 0.901 6.43 13.89 0.950 15.21 8.52

w/ Conf-OT 69.8 0.899 4.87 12.85 0.952 8.70 8.25
RAPS [2] 66.5 0.900 6.26 14.06 0.952 19.37 8.39

w/ Conf-OT 69.8 0.896 4.71 13.08 0.952 8.93 8.40
Caltech101
LAC [39] 91.2 0.897 0.97 13.59 0.948 1.10 8.11

w/ Conf-OT 92.2 0.896 0.94 14.44 0.949 1.08 8.97
APS [51] 91.2 0.899 2.07 8.93 0.946 3.05 6.79

w/ Conf-OT 92.2 0.898 1.39 8.67 0.945 1.81 6.39
RAPS [2] 91.2 0.899 1.96 9.07 0.946 2.72 6.79

w/ Conf-OT 92.2 0.898 1.37 8.65 0.945 1.74 6.39
DTD
LAC [39] 41.9 0.904 11.49 10.11 0.950 16.58 5.94

w/ Conf-OT 46.4 0.894 8.46 8.05 0.947 13.44 5.30
APS [51] 41.9 0.904 12.82 9.38 0.951 16.96 5.49

w/ Conf-OT 46.4 0.900 9.97 7.73 0.949 14.28 5.07
RAPS [2] 41.9 0.903 12.49 9.45 0.953 17.05 5.82

w/ Conf-OT 46.4 0.898 9.89 7.80 0.948 14.06 5.20
UCF101
LAC [39] 63.6 0.902 3.74 12.08 0.951 6.19 6.91

w/ Conf-OT 67.3 0.902 2.83 11.04 0.950 5.26 6.83
APS [51] 63.6 0.903 6.08 9.624 0.951 9.55 6.20

w/ Conf-OT 67.3 0.902 4.84 8.02 0.952 7.24 5.37
RAPS [2] 63.6 0.904 5.78 9.67 0.952 8.65 6.18

w/ Conf-OT 67.3 0.902 4.68 7.98 0.953 7.01 5.46

Table 13. Results on fine-grained tasks with CLIP ViT-B/32.

Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

ImageNet
LAC [39] 63.8 0.901 4.13 8.40 0.950 8.61 5.00

w/ Conf-OT 64.7 0.901 3.84 7.57 0.950 8.18 4.71
APS [51] 63.8 0.900 13.94 6.89 0.950 27.61 4.52

w/ Conf-OT 64.7 0.900 10.90 6.14 0.950 20.93 4.26
RAPS [2] 63.8 0.901 10.15 7.00 0.950 16.24 4.56

w/ Conf-OT 64.7 0.900 8.84 6.21 0.950 14.61 4.29
ImageNet-A
LAC [39] 31.758 0.897 24.14 8.93 0.949 40.57 5.80

w/ Conf-OT 35.128 0.899 21.44 11.14 0.949 35.75 7.24
APS [51] 31.758 0.899 33.47 8.15 0.949 51.72 5.36

w/ Conf-OT 35.128 0.899 28.22 10.10 0.950 45.22 7.09
RAPS [2] 31.758 0.899 26.80 8.57 0.950 39.78 6.16

w/ Conf-OT 35.128 0.899 24.02 10.5 0.950 35.21 7.40
ImageNet-V2
LAC [39] 56.4 0.901 7.28 12.58 0.951 16.66 7.85

w/ Conf-OT 57.5 0.900 6.92 12.47 0.950 16.21 7.94
APS [51] 56.4 0.900 23.97 12.43 0.949 47.19 7.92

w/ Conf-OT 57.5 0.901 18.38 12.22 0.950 35.61 7.85
RAPS [2] 56.4 0.900 15.99 12.44 0.950 25.06 7.93

w/ Conf-OT 57.5 0.900 13.88 12.26 0.950 22.94 7.87
ImageNet-R
LAC [39] 69.2 0.899 3.69 5.66 0.949 8.38 3.36

w/ Conf-OT 71.1 0.900 3.30 5.98 0.950 7.10 3.59
APS [51] 69.2 0.899 8.77 4.03 0.950 14.61 2.85

w/ Conf-OT 71.1 0.898 8.07 4.07 0.950 13.05 2.82
RAPS [2] 69.2 0.899 7.92 4.12 0.950 12.26 2.89

w/ Conf-OT 71.1 0.899 7.30 4.12 0.950 11.22 2.92
ImageNet-Sketch
LAC [39] 42.1 0.900 24.35 9.68 0.950 56.32 5.88

w/ Conf-OT 46.0 0.899 16.32 8.41 0.950 39.31 5.22
APS [51] 42.1 0.900 50.18 9.17 0.950 87.46 5.78

w/ Conf-OT 46.0 0.899 34.77 7.66 0.950 60.37 4.94
RAPS [2] 42.1 0.900 33.90 9.51 0.950 61.85 5.83

w/ Conf-OT 46.0 0.900 25.95 7.82 0.950 42.45 5.16

Table 14. Results on ImageNet shifts with CLIP ViT-B/32.



Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

SUN397
LAC [39] 62.5 0.900 3.47 9.60 0.951 6.52 5.68

w/ Conf-OT 67.0 0.899 2.72 7.81 0.951 4.83 4.86
APS [51] 62.5 0.901 7.42 7.74 0.951 13.70 5.03

w/ Conf-OT 67.0 0.900 5.26 6.42 0.951 9.05 4.33
RAPS [2] 62.5 0.902 6.70 7.90 0.951 10.89 5.14

w/ Conf-OT 67.0 0.900 4.93 6.44 0.950 7.95 4.43
FGVCAircraft
LAC [39] 24.4 0.894 17.94 13.37 0.948 27.90 7.92

w/ Conf-OT 27.8 0.896 13.81 10.03 0.944 19.89 6.62
APS [51] 24.4 0.895 17.66 13.11 0.948 28.44 8.05

w/ Conf-OT 27.8 0.893 14.51 10.18 0.945 20.93 6.36
RAPS [2] 24.4 0.896 17.96 13.38 0.947 28.97 7.98

w/ Conf-OT 27.8 0.895 14.32 10.24 0.946 20.80 6.30
EuroSAT
LAC [39] 48.2 0.899 4.13 7.48 0.950 4.90 4.00

w/ Conf-OT 58.0 0.898 2.98 5.33 0.952 4.32 2.69
APS [51] 48.2 0.900 4.22 6.80 0.948 5.05 4.23

w/ Conf-OT 58.0 0.900 3.48 4.99 0.951 4.54 3.48
RAPS [2] 48.2 0.899 4.21 6.89 0.948 5.05 4.27

w/ Conf-OT 58.0 0.900 3.46 4.96 0.951 4.52 3.52
StanfordCars
LAC [39] 65.5 0.899 2.36 10.73 0.951 3.34 6.50

w/ Conf-OT 68.4 0.900 2.13 9.33 0.950 3.03 5.73
APS [51] 65.5 0.901 3.26 8.00 0.952 4.43 5.24

w/ Conf-OT 68.4 0.898 3.00 6.81 0.948 4.07 4.60
RAPS [2] 65.5 0.901 3.21 8.08 0.952 4.29 5.28

w/ Conf-OT 68.4 0.900 2.97 6.83 0.947 3.97 4.67
Food101
LAC [39] 85.8 0.899 1.14 5.28 0.950 1.56 2.70

w/ Conf-OT 85.5 0.898 1.15 4.84 0.949 1.64 2.69
APS [51] 85.8 0.900 1.99 2.60 0.949 2.87 1.87

w/ Conf-OT 85.5 0.899 2.05 2.44 0.949 2.99 1.84
RAPS [2] 85.8 0.900 1.94 2.62 0.950 2.70 1.85

w/ Conf-OT 85.5 0.900 2.00 2.42 0.949 2.83 1.84
OxfordPets
LAC [39] 88.9 0.903 1.02 9.97 0.949 1.20 5.50

w/ Conf-OT 90.6 0.899 0.98 7.90 0.949 1.11 4.36
APS [51] 88.9 0.905 1.37 3.75 0.950 1.65 2.74

w/ Conf-OT 90.6 0.902 1.34 3.94 0.952 1.65 3.07
RAPS [2] 88.9 0.904 1.37 3.74 0.950 1.64 2.75

w/ Conf-OT 90.6 0.902 1.34 3.92 0.951 1.64 3.04
Flowers102
LAC [39] 71.0 0.899 4.75 16.64 0.951 10.81 9.03

w/ Conf-OT 75.4 0.903 2.95 16.68 0.950 5.99 9.40
APS [51] 71.0 0.899 5.60 14.45 0.949 11.18 9.15

w/ Conf-OT 75.4 0.901 4.10 12.59 0.951 6.50 8.70
RAPS [2] 71.0 0.898 5.49 14.62 0.950 11.49 9.03

w/ Conf-OT 75.4 0.900 4.02 12.69 0.950 6.49 8.81
Caltech101
LAC [39] 93.1 0.893 0.95 12.73 0.950 1.06 8.31

w/ Conf-OT 92.5 0.900 0.93 13.82 0.946 1.06 9.04
APS [51] 93.1 0.895 2.16 9.48 0.949 3.30 7.20

w/ Conf-OT 92.5 0.898 1.27 8.50 0.945 1.56 6.30
RAPS [2] 93.1 0.895 2.05 9.48 0.949 2.93 7.20

w/ Conf-OT 92.5 0.898 1.26 8.46 0.945 1.52 6.31
DTD
LAC [39] 43.6 0.898 10.88 11.47 0.950 17.09 6.53

w/ Conf-OT 46.2 0.904 9.01 9.20 0.952 12.98 5.35
APS [51] 43.6 0.902 12.71 10.10 0.950 18.76 6.52

w/ Conf-OT 46.2 0.901 10.19 8.32 0.952 14.03 5.35
RAPS [2] 43.6 0.904 12.47 10.20 0.950 17.52 6.31

w/ Conf-OT 46.2 0.904 10.14 8.38 0.953 13.88 5.17
UCF101
LAC [39] 67.6 0.902 2.86 11.69 0.953 5.09 6.69

w/ Conf-OT 72.9 0.902 2.33 11.51 0.950 4.13 6.79
APS [51] 67.6 0.902 5.13 8.88 0.951 7.78 5.85

w/ Conf-OT 72.9 0.898 4.10 7.60 0.950 6.17 5.30
RAPS [2] 67.6 0.902 4.88 8.88 0.950 7.18 5.98

w/ Conf-OT 72.9 0.898 3.99 7.70 0.951 5.92 5.35

Table 15. Results on fine-grained tasks with CLIP ViT-B/16.

Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

ImageNet
LAC [39] 68.7 0.901 2.81 8.56 0.950 5.51 5.20

w/ Conf-OT 69.5 0.901 2.70 7.71 0.950 5.22 4.77
APS [51] 68.7 0.901 10.07 6.84 0.950 20.65 4.54

w/ Conf-OT 69.5 0.901 7.77 6.32 0.950 15.15 4.32
RAPS [2] 68.7 0.901 7.34 6.92 0.950 11.82 4.65

w/ Conf-OT 69.5 0.901 6.38 6.32 0.950 10.43 4.39
ImageNet-A
LAC [39] 50.7 0.897 9.25 9.60 0.949 18.17 6.48

w/ Conf-OT 53.0 0.897 7.84 10.81 0.946 16.77 7.87
APS [51] 50.7 0.898 16.19 8.71 0.950 27.55 5.88

w/ Conf-OT 53.0 0.899 14.07 10.01 0.947 24.18 7.11
RAPS [2] 50.7 0.896 13.47 8.95 0.949 20.00 6.09

w/ Conf-OT 53.0 0.898 12.23 10.06 0.947 18.89 7.71
ImageNet-V2
LAC [39] 62.2 0.898 4.54 12.81 0.949 10.2 8.00

w/ Conf-OT 63.0 0.901 4.44 12.58 0.951 10.11 7.83
APS [51] 62.2 0.898 17.06 12.49 0.950 33.17 7.91

w/ Conf-OT 63.0 0.899 12.79 12.26 0.949 24.25 7.92
RAPS [51] 62.2 0.899 11.47 12.40 0.951 17.99 7.87

w/ Conf-OT 63.0 0.897 9.91 12.36 0.948 15.74 7.97
ImageNet-R
LAC [39] 77.5 0.901 1.92 5.86 0.950 4.02 3.68

w/ Conf-OT 78.7 0.900 1.80 6.12 0.950 3.62 3.82
APS [51] 77.5 0.903 5.82 3.90 0.952 9.55 2.77

w/ Conf-OT 78.7 0.901 5.33 3.72 0.951 8.61 2.70
RAPS [2] 77.5 0.903 5.23 3.93 0.951 7.87 2.85

w/ Conf-OT 78.7 0.901 4.83 3.77 0.952 7.32 2.73
ImageNet-Sketch
LAC [39] 48.2 0.900 14.84 9.82 0.950 36.23 5.82

w/ Conf-OT 51.9 0.900 10.25 8.61 0.950 25.18 5.23
APS [51] 48.2 0.901 37.35 9.02 0.950 65.74 5.65

w/ Conf-OT 51.9 0.900 25.31 7.55 0.950 45.06 4.97
RAPS [2] 48.2 0.900 24.01 9.43 0.950 39.52 5.79

w/ Conf-OT 51.9 0.900 18.42 7.73 0.950 29.75 5.18

Table 16. Results on ImageNet shifts with CLIP ViT-B/16.



Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

SUN397
LAC [39] 67.6 0.900 2.85 9.78 0.950 5.2 5.51

w/ Conf-OT 71.0 0.901 2.24 7.70 0.950 3.87 4.69
APS [51] 67.6 0.900 6.99 7.70 0.951 14.12 4.95

w/ Conf-OT 71.0 0.901 4.46 6.11 0.951 8.14 4.20
RAPS [2] 67.6 0.901 5.96 7.77 0.951 10.12 5.05

w/ Conf-OT 71.0 0.902 4.15 6.12 0.951 6.94 4.25
FGVCAircraft
LAC [39] 32.5 0.895 7.27 11.15 0.947 10.47 6.67

w/ Conf-OT 36.2 0.893 6.25 10.32 0.946 9.13 6.52
APS [51] 32.5 0.896 8.38 10.27 0.948 11.34 6.77

w/ Conf-OT 36.2 0.898 7.28 8.824 0.949 10.04 6.00
RAPS [2] 32.5 0.896 8.25 10.35 0.948 11.00 6.82

w/ Conf-OT 36.2 0.898 7.21 8.85 0.950 9.95 6.04
EuroSAT
LAC [39] 60.2 0.900 2.47 7.74 0.950 3.21 4.32

w/ Conf-OT 65.4 0.900 2.16 7.33 0.949 3.04 3.95
APS [51] 60.2 0.897 2.87 6.02 0.948 3.60 3.63

w/ Conf-OT 65.4 0.899 2.57 4.22 0.949 3.36 2.67
RAPS [2] 60.2 0.897 2.86 5.97 0.948 3.59 3.62

w/ Conf-OT 65.4 0.899 2.56 4.21 0.950 3.34 2.70
StanfordCars
LAC [39] 76.9 0.904 1.52 11.04 0.952 2.04 6.41

w/ Conf-OT 79.6 0.901 1.37 9.24 0.954 1.79 5.27
APS [51] 76.9 0.903 2.06 7.51 0.950 2.62 4.99

w/ Conf-OT 79.6 0.903 1.90 6.45 0.950 2.43 4.29
RAPS [2] 76.9 0.903 2.04 7.50 0.950 2.57 4.99

w/ Conf-OT 79.6 0.903 1.88 6.49 0.950 2.40 4.28
Food101
LAC [39] 90.8 0.899 0.97 5.48 0.949 1.15 2.79

w/ Conf-OT 90.4 0.900 0.98 5.38 0.950 1.20 2.78
APS [51] 90.8 0.899 1.50 2.40 0.949 2.02 1.64

w/ Conf-OT 90.4 0.898 1.57 2.30 0.949 2.16 1.71
RAPS [2] 90.8 0.899 1.47 2.41 0.949 1.92 1.64

w/ Conf-OT 90.4 0.898 1.54 2.31 0.949 2.05 1.72
OxfordPets
LAC [39] 93.4 0.898 0.93 10.51 0.949 1.03 5.75

w/ Conf-OT 93.4 0.895 0.93 9.82 0.949 1.03 4.99
APS [51] 93.4 0.905 1.16 3.74 0.952 1.36 2.72

w/ Conf-OT 93.4 0.907 1.16 3.88 0.952 1.37 2.81
RAPS [2] 93.4 0.905 1.16 3.72 0.952 1.35 2.72

w/ Conf-OT 93.4 0.907 1.16 3.88 0.953 1.36 2.81
Flowers102
LAC [39] 79.4 0.900 1.83 15.75 0.949 3.60 8.62

w/ Conf-OT 83.1 0.898 1.40 15.45 0.950 2.31 9.08
APS [51] 79.4 0.897 2.69 12.16 0.948 4.15 8.06

w/ Conf-OT 83.1 0.900 2.18 10.32 0.947 3.07 7.08
RAPS [2] 79.4 0.897 2.63 12.27 0.949 4.02 8.09

w/ Conf-OT 83.1 0.900 2.15 10.39 0.946 3.00 7.26
Caltech101
LAC [39] 95.0 0.900 0.93 12.35 0.947 1.01 7.43

w/ Conf-OT 96.7 0.897 0.90 15.85 0.948 0.97 9.60
APS [51] 95.0 0.898 1.66 8.66 0.946 2.35 6.65

w/ Conf-OT 96.7 0.899 1.06 8.34 0.947 1.23 6.16
RAPS [2] 95.0 0.898 1.59 8.62 0.946 2.12 6.65

w/ Conf-OT 96.7 0.899 1.06 8.32 0.947 1.22 6.15
DTD
LAC [39] 53.2 0.902 7.24 10.43 0.951 11.94 6.13

w/ Conf-OT 57.5 0.900 5.79 9.91 0.950 9.87 5.55
APS [51] 53.2 0.901 8.60 9.16 0.947 13.01 5.80

w/ Conf-OT 57.5 0.894 7.18 8.28 0.948 11.17 5.50
RAPS [2] 53.2 0.902 8.31 9.53 0.950 12.61 5.95

w/ Conf-OT 57.5 0.897 7.06 8.26 0.952 10.76 5.62
UCF101
LAC [39] 74.8 0.901 1.80 12.47 0.952 3.05 7.00

w/ Conf-OT 78.2 0.903 1.65 11.57 0.951 2.62 6.86
APS [51] 74.8 0.905 3.34 9.33 0.952 5.12 6.22

w/ Conf-OT 78.2 0.905 2.81 7.38 0.951 4.10 5.21
RAPS [2] 74.8 0.904 3.16 9.38 0.951 4.55 6.19

w/ Conf-OT 78.2 0.903 2.72 7.36 0.950 3.85 5.24

Table 17. Results on fine-grained tasks with CLIP ViT-L/14.

Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

ImageNet
LAC [39] 75.8 0.900 1.86 8.70 0.950 3.39 5.26

w/ Conf-OT 75.7 0.901 1.88 7.78 0.950 3.48 4.81
APS [51] 75.8 0.901 6.96 6.82 0.949 15.22 4.63

w/ Conf-OT 75.7 0.900 5.53 6.25 0.949 11.63 4.41
RAPS [2] 75.8 0.900 4.86 6.86 0.949 7.75 4.72

w/ Conf-OT 75.7 0.900 4.39 6.30 0.949 7.24 4.42
ImageNet-A
LAC [39] 70.6 0.898 3.11 10.43 0.949 6.44 7.00

w/ Conf-OT 72.9 0.897 2.73 10.72 0.948 5.84 7.45
APS [51] 70.5 0.898 7.46 8.15 0.947 12.67 5.74

w/ Conf-OT 72.9 0.898 6.08 8.98 0.947 11.01 6.97
RAPS [2] 70.6 0.897 6.31 8.38 0.949 9.54 6.08

w/ Conf-OT 72.9 0.898 5.38 9.07 0.948 8.69 7.07
ImageNet-V2
LAC [39] 70.2 0.899 3.05 12.93 0.951 6.78 7.95

w/ Conf-OT 69.6 0.900 2.91 12.61 0.949 7.02 7.97
APS [51] 70.2 0.899 13.75 12.43 0.948 28.69 8.01

w/ Conf-OT 69.6 0.899 9.56 12.25 0.948 19.62 8.00
RAPS [2] 70.2 0.900 8.39 12.42 0.949 12.70 7.94

w/ Conf-OT 69.6 0.898 7.10 12.24 0.950 11.53 7.95
ImageNet-R
LAC [39] 87.7 0.899 1.06 6.41 0.950 1.49 3.79

w/ Conf-OT 88.0 0.899 1.05 7.11 0.949 1.47 4.17
APS [51] 87.7 0.899 3.08 3.63 0.950 4.99 2.68

w/ Conf-OT 88.0 0.898 3.00 3.58 0.950 4.81 2.59
RAPS [2] 87.7 0.899 2.78 3.65 0.950 4.05 2.71

w/ Conf-OT 88.0 0.899 2.73 3.59 0.951 3.96 2.68
ImageNet-Sketch
LAC [39] 59.6 0.900 6.99 9.94 0.950 19.63 5.89

w/ Conf-OT 61.8 0.899 5.27 8.78 0.949 13.67 5.29
APS [51] 59.6 0.900 25.44 9.06 0.950 47.83 5.70

w/ Conf-OT 61.8 0.900 16.68 7.57 0.950 31.70 5.02
RAPS [2] 59.6 0.900 14.13 9.22 0.949 21.80 5.92

w/ Conf-OT 61.8 0.899 10.86 7.74 0.950 17.03 5.21

Table 18. Results on ImageNet shifts with CLIP ViT-L/14.



Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

SUN397
LAC [39] 69.9 0.899 2.26 8.48 0.950 3.82 5.10

w/ Conf-OT 71.7 0.900 2.11 7.40 0.950 3.53 4.62
APS [51] 69.9 0.899 4.23 6.66 0.949 7.19 4.51

w/ Conf-OT 71.7 0.899 3.70 6.01 0.949 6.05 4.18
RAPS [2] 69.9 0.899 3.97 6.74 0.949 6.26 4.52

w/ Conf-OT 71.7 0.899 3.53 6.06 0.948 5.44 4.22
FGVCAircraft
LAC [39] 30.1 0.898 13.70 14.35 0.949 24.08 8.38

w/ Conf-OT 34.4 0.897 9.01 10.46 0.949 14.09 6.73
APS [51] 30.1 0.897 15.34 13.74 0.949 24.59 8.35

w/ Conf-OT 34.4 0.897 10.70 10.74 0.949 15.35 6.70
RAPS [2] 30.1 0.896 14.58 13.79 0.952 24.15 8.26

w/ Conf-OT 34.4 0.898 10.49 10.76 0.949 14.93 6.76
EuroSAT
LAC [39] 49.5 0.901 3.80 7.29 0.952 4.83 3.81

w/ Conf-OT 56.3 0.900 2.82 5.06 0.950 3.81 2.58
APS [51] 49.5 0.903 4.15 6.51 0.951 5.03 3.82

w/ Conf-OT 56.3 0.901 3.47 4.95 0.950 4.40 2.65
RAPS [2] 49.5 0.903 4.14 6.59 0.951 5.01 3.91

w/ Conf-OT 56.3 0.900 3.45 4.96 0.950 4.38 2.62
StanfordCars
LAC [39] 83.1 0.898 1.20 9.25 0.949 1.55 5.49

w/ Conf-OT 84.5 0.899 1.15 9.10 0.950 1.46 5.25
APS [51] 83.1 0.902 1.73 6.34 0.950 2.26 4.24

w/ Conf-OT 84.5 0.899 1.67 6.07 0.951 2.20 4.06
RAPS [2] 83.1 0.902 1.72 6.35 0.950 2.22 4.24

w/ Conf-OT 84.5 0.899 1.66 6.04 0.950 2.16 4.08
Food101
LAC [39] 86.0 0.899 1.13 4.98 0.949 1.62 2.60

w/ Conf-OT 85.6 0.899 1.14 4.65 0.950 1.65 2.51
APS [51] 86.0 0.899 1.98 2.39 0.949 2.84 1.73

w/ Conf-OT 85.6 0.900 2.04 2.42 0.950 2.97 1.77
RAPS [2] 86.0 0.899 1.94 2.40 0.949 2.69 1.73

w/ Conf-OT 85.6 0.900 1.99 2.40 0.950 2.80 1.80
OxfordPets
LAC [39] 91.5 0.898 0.96 9.32 0.948 1.08 5.10

w/ Conf-OT 92.5 0.901 0.95 8.29 0.952 1.06 4.41
APS [51] 91.5 0.906 1.26 3.77 0.952 1.49 2.66

w/ Conf-OT 92.5 0.907 1.24 3.73 0.953 1.49 2.77
RAPS [2] 91.5 0.907 1.26 3.80 0.952 1.48 2.63

w/ Conf-OT 92.5 0.906 1.24 3.71 0.953 1.47 2.79
Flowers102
LAC [39] 75.2 0.900 3.34 15.78 0.951 7.37 8.29

w/ Conf-OT 78.5 0.901 2.16 15.87 0.950 4.04 8.98
APS [51] 75.2 0.900 4.08 12.97 0.949 7.57 8.15

w/ Conf-OT 78.5 0.900 3.25 11.55 0.948 4.79 8.28
RAPS [2] 75.2 0.899 4.01 13.21 0.949 7.47 8.34

w/ Conf-OT 78.5 0.901 3.17 11.59 0.947 4.63 8.28
Caltech101
LAC [39] 96.3 0.898 0.90 14.32 0.948 0.97 9.06

w/ Conf-OT 96.2 0.900 0.90 16.16 0.949 0.96 9.15
APS [51] 96.3 0.899 1.17 8.56 0.946 1.53 6.53

w/ Conf-OT 96.2 0.901 1.06 8.02 0.946 1.23 6.24
RAPS [2] 96.3 0.900 1.15 8.56 0.946 1.45 6.53

w/ Conf-OT 96.2 0.901 1.06 8.02 0.946 1.21 6.16
DTD
LAC [39] 61.5 0.907 3.63 8.87 0.949 5.75 5.17

w/ Conf-OT 64.3 0.902 3.13 7.77 0.947 4.84 5.14
APS [51] 61.5 0.902 5.87 7.76 0.949 8.33 4.74

w/ Conf-OT 64.3 0.903 5.01 7.55 0.953 7.58 4.65
RAPS [2] 61.5 0.902 5.80 7.66 0.950 8.16 4.61

w/ Conf-OT 64.3 0.902 4.92 7.49 0.950 7.33 4.82
UCF101
LAC [39] 72.0 0.904 2.15 11.85 0.952 3.68 6.61

w/ Conf-OT 75.3 0.902 1.84 11.00 0.950 2.92 6.36
APS [51] 72.0 0.899 3.71 7.92 0.949 5.52 5.45

w/ Conf-OT 75.3 0.899 3.25 6.89 0.949 4.67 4.96
RAPS [2] 72.0 0.899 3.57 7.96 0.950 5.06 5.42

w/ Conf-OT 75.3 0.899 3.14 6.79 0.950 4.45 4.95

Table 19. Results on fine-grained tasks with MetaCLIP ViT-B/16.

Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

ImageNet
LAC [39] 72.2 0.901 2.30 8.24 0.950 4.45 5.19

w/ Conf-OT 72.7 0.901 2.24 7.58 0.951 4.36 4.77
APS [51] 72.2 0.899 8.26 6.52 0.950 16.70 4.46

w/ Conf-OT 72.7 0.900 6.80 6.16 0.950 13.61 4.23
RAPS [2] 72.2 0.899 6.20 6.62 0.950 9.93 4.52

w/ Conf-OT 72.7 0.899 5.58 6.22 0.950 9.21 4.27
ImageNet-A
LAC [39] 49.6 0.901 9.98 9.47 0.949 19.34 6.49

w/ Conf-OT 53.1 0.895 8.48 11.38 0.949 18.33 7.09
APS [51] 49.6 0.899 15.99 8.22 0.948 26.41 6.08

w/ Conf-OT 53.1 0.898 14.22 9.66 0.948 24.67 6.91
RAPS [2] 49.6 0.900 13.73 8.49 0.947 20.57 6.17

w/ Conf-OT 53.1 0.899 12.57 9.76 0.948 19.61 7.09
ImageNet-V2
LAC [39] 65.3 0.900 3.96 12.66 0.952 9.14 7.81

w/ Conf-OT 65.1 0.900 3.82 12.46 0.950 8.42 7.85
APS [51] 65.3 0.901 14.06 12.34 0.951 28.58 7.77

w/ Conf-OT 65.1 0.901 11.28 12.30 0.952 22.67 7.72
RAPS [2] 65.3 0.901 9.90 12.28 0.952 15.92 7.76

w/ Conf-OT 65.1 0.900 8.87 12.24 0.952 14.77 7.70
ImageNet-R
LAC [39] 84.0 0.899 1.28 5.59 0.950 2.19 3.69

w/ Conf-OT 84.5 0.899 1.24 6.00 0.950 2.11 3.69
APS [51] 84.0 0.899 4.24 3.65 0.950 6.92 2.64

w/ Conf-OT 84.5 0.900 4.02 3.58 0.951 6.41 2.59
RAPS [2] 84.0 0.899 3.84 3.67 0.951 5.76 2.70

w/ Conf-OT 84.5 0.900 3.65 3.55 0.950 5.41 2.67
ImageNet-Sketch
LAC [39] 59.8 0.900 6.24 10.22 0.950 16.26 6.00

w/ Conf-OT 62.2 0.900 4.85 8.82 0.950 11.98 5.38
APS [51] 59.8 0.901 23.31 9.11 0.950 41.08 5.76

w/ Conf-OT 62.2 0.900 15.98 7.18 0.950 28.88 5.01
RAPS [2] 59.8 0.901 14.60 9.29 0.950 22.08 6.02

w/ Conf-OT 62.2 0.900 11.27 7.34 0.950 17.83 5.21

Table 20. Results on ImageNet shifts with MetaCLIP ViT-B/16.



Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

SUN397
LAC [39] 76.0 0.900 1.69 9.12 0.951 2.70 5.26

w/ Conf-OT 77.4 0.900 1.59 7.96 0.950 2.44 4.81
APS [51] 76.0 0.899 3.22 6.53 0.950 5.60 4.36

w/ Conf-OT 77.4 0.898 2.77 6.00 0.949 4.62 4.13
RAPS [2] 76.0 0.898 3.03 6.58 0.949 4.78 4.37

w/ Conf-OT 77.4 0.899 2.65 6.00 0.949 4.11 4.15
FGVCAircraft
LAC [39] 49.9 0.898 3.30 11.91 0.950 4.68 7.06

w/ Conf-OT 55.7 0.901 2.70 9.44 0.947 3.47 5.84
APS [51] 49.9 0.899 4.29 11.02 0.950 5.83 6.65

w/ Conf-OT 55.7 0.898 3.43 7.51 0.949 4.52 5.02
RAPS [2] 49.9 0.900 4.20 11.07 0.948 5.63 6.72

w/ Conf-OT 55.7 0.898 3.39 7.46 0.949 4.42 4.99
EuroSAT
LAC [39] 62.2 0.899 3.42 11.54 0.950 4.43 5.88

w/ Conf-OT 63.5 0.899 2.27 7.04 0.951 3.15 3.50
APS [51] 62.2 0.899 3.96 10.12 0.949 4.88 5.27

w/ Conf-OT 63.5 0.899 2.62 4.50 0.951 3.47 2.63
RAPS [2] 62.2 0.900 3.95 10.17 0.949 4.90 5.42

w/ Conf-OT 63.5 0.898 2.62 4.50 0.951 3.45 2.68
StanfordCars
LAC [39] 89.5 0.901 1.00 11.65 0.951 1.17 5.93

w/ Conf-OT 91.0 0.902 0.98 10.87 0.950 1.13 5.82
APS [51] 89.5 0.901 1.30 6.04 0.949 1.58 4.15

w/ Conf-OT 91.0 0.901 1.30 5.90 0.949 1.57 3.97
RAPS [2] 89.5 0.901 1.03 6.04 0.949 1.57 4.11

w/ Conf-OT 91.0 0.901 1.29 5.91 0.949 1.55 3.98
Food101
LAC [39] 92.2 0.900 0.95 5.58 0.950 1.10 2.80

w/ Conf-OT 91.8 0.900 0.95 5.57 0.950 1.11 2.91
APS [51] 92.2 0.899 1.41 2.19 0.949 1.86 1.58

w/ Conf-OT 91.8 0.899 1.44 2.22 0.949 1.91 1.66
RAPS [2] 92.2 0.899 1.39 2.16 0.950 1.77 1.57

w/ Conf-OT 91.8 0.899 1.42 2.23 0.949 1.81 1.67
OxfordPets
LAC [39] 95.5 0.903 0.92 10.75 0.950 0.99 5.35

w/ Conf-OT 95.6 0.901 0.92 10.73 0.950 0.99 5.31
APS [51] 95.5 0.904 1.10 3.64 0.953 1.26 2.68

w/ Conf-OT 95.6 0.903 1.09 3.77 0.952 1.26 2.76
RAPS [2] 95.5 0.904 1.10 3.63 0.953 1.25 2.68

w/ Conf-OT 95.6 0.903 1.09 3.77 0.953 1.25 2.76
Flowers102
LAC [39] 84.7 0.902 1.15 15.29 0.950 1.82 8.42

w/ Conf-OT 89.9 0.902 1.01 14.77 0.951 1.27 8.82
APS [51] 84.7 0.902 2.04 10.21 0.948 2.81 7.31

w/ Conf-OT 89.9 0.900 1.62 9.63 0.947 2.25 6.71
RAPS [2] 84.7 0.900 1.99 10.28 0.948 2.72 7.29

w/ Conf-OT 89.9 0.900 1.61 9.67 0.947 2.19 6.71
Caltech101
LAC [39] 98.0 0.897 0.90 15.61 0.951 0.95 9.36

w/ Conf-OT 98.2 0.896 0.90 17.27 0.947 0.95 10.57
APS [51] 98.0 0.898 1.00 8.29 0.946 1.17 6.32

w/ Conf-OT 98.2 0.897 1.01 8.01 0.945 1.15 6.10
RAPS [2] 98.0 0.898 1.00 8.35 0.946 1.15 6.32

w/ Conf-OT 98.2 0.897 1.01 7.98 0.945 1.13 6.10
DTD
LAC [39] 65.8 0.899 2.57 10.75 0.950 4.27 6.32

w/ Conf-OT 70.6 0.900 2.24 9.10 0.950 3.06 5.50
APS [51] 65.8 0.905 4.64 8.00 0.952 6.50 4.98

w/ Conf-OT 70.6 0.900 3.66 7.37 0.949 5.55 5.11
RAPS [2] 65.8 0.905 4.53 8.10 0.950 6.25 4.98

w/ Conf-OT 70.6 0.900 3.61 7.37 0.951 5.41 5.00
UCF101
LAC [39] 81.9 0.899 1.24 12.27 0.949 1.64 6.76

w/ Conf-OT 85.3 0.898 1.12 11.21 0.949 1.52 6.56
APS [51] 81.9 0.899 2.06 7.46 0.951 2.89 4.90

w/ Conf-OT 85.3 0.897 2.00 6.83 0.952 2.83 4.60
RAPS [2] 81.9 0.899 2.00 7.47 0.952 2.71 4.94

w/ Conf-OT 85.3 0.897 1.95 6.79 0.951 2.66 4.60

Table 21. Results on fine-grained tasks with MetaCLIP ViT-H/14.

Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

ImageNet
LAC [39] 80.7 0.901 1.42 8.84 0.950 2.33 5.38

w/ Conf-OT 80.6 0.900 1.42 7.99 0.950 2.36 4.89
APS [51] 80.7 0.899 5.60 6.64 0.949 12.37 4.58

w/ Conf-OT 80.6 0.898 4.24 6.22 0.950 8.87 4.30
RAPS [2] 80.7 0.899 3.90 6.68 0.949 6.15 4.66

w/ Conf-OT 80.6 0.898 3.39 6.25 0.950 5.47 4.34
ImageNet-A
LAC [39] 75.5 0.898 2.24 10.17 0.950 5.58 6.30

w/ Conf-OT 77.0 0.897 2.10 10.09 0.950 4.94 6.85
APS [51] 75.5 0.900 6.70 7.70 0.951 11.69 5.65

w/ Conf-OT 77.0 0.898 5.63 8.10 0.949 10.48 5.91
RAPS [2] 75.5 0.901 5.71 7.86 0.951 8.77 5.83

w/ Conf-OT 77.0 0.898 4.98 8.18 0.951 8.18 6.14
ImageNet-V2
LAC [39] 74.3 0.900 2.14 12.80 0.950 4.35 7.89

w/ Conf-OT 74.5 0.900 2.15 12.55 0.950 4.54 7.90
APS [51] 74.3 0.898 10.07 12.37 0.950 22.16 7.91

w/ Conf-OT 74.5 0.899 7.74 12.20 0.950 16.96 7.86
RAPS [2] 74.3 0.898 6.31 12.43 0.950 9.84 7.89

w/ Conf-OT 74.5 0.899 5.67 12.24 0.950 9.34 7.81
ImageNet-R
LAC [39] 93.4 0.899 0.93 6.88 0.950 1.05 3.95

w/ Conf-OT 93.4 0.900 0.93 7.06 0.950 1.05 3.99
APS [51] 93.4 0.899 2.46 3.43 0.950 3.82 2.49

w/ Conf-OT 93.4 0.900 2.28 3.42 0.951 3.51 2.50
RAPS [2] 93.4 0.899 2.19 3.44 0.950 3.07 2.51

w/ Conf-OT 93.4 0.900 2.06 3.43 0.951 2.86 2.49
ImageNet-Sketch
LAC [39] 70.3 0.900 3.00 10.53 0.951 7.69 5.98

w/ Conf-OT 71.6 0.900 2.58 9.36 0.950 5.93 5.45
APS [51] 70.3 0.900 16.95 8.49 0.950 31.08 5.74

w/ Conf-OT 71.6 0.900 11.29 7.26 0.950 21.11 5.01
RAPS [2] 70.3 0.900 9.18 8.71 0.950 13.01 5.86

w/ Conf-OT 71.6 0.900 7.15 7.35 0.950 10.71 5.19

Table 22. Results on ImageNet shifts with MetaCLIP ViT-H/14.


