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In this appendix, we give additional details for purposes
of reproducible research and show further results that provide
more insights into our proposed GLASS method. Our code
is available at https://github.com/visinf/glass/.

A. Datasets

As in previous work [32, 62, 73], we report all our results on
the VOC [21] and COCO [44] datasets. Both these datasets
serve as popular benchmarks for object discovery and have
been used to evaluate various object-centric learning meth-
ods on real-world images [32, 62, 73].

VOC. The PASCAL VOC dataset [21] is a standard dataset
used in object discovery. We use the “trainaug” variant for
generating the images and their corresponding mask. “train-
aug” is an unofficial split of datasets, consisting of 10,582 im-
ages, which include 1,464 images from the original VOC seg-
mentation train set and 9,118 images from the SBD dataset
[82]. GLASS and GLASS† are evaluated on the official VOC
validation set of 1,449 images

COCO. The COCO dataset [44] consists of 118,287 images
of complex multi-object scenes. Unlike the VOC dataset,
where images often contain only a single object in the scene,
COCO images contain at least two objects, often even a
dozen. GLASS and GLASS† are evaluated on a validation
set with 5,000 COCO images.

Module Hyperparameter Value

General Batch size 32
Precision fp16
Learning rate: Phase 1 2e-5
Learning rate: Phase 2 4e-5
Optimizer Adam
Learning rate scheduler Constant

Encoder Architecture DINOv2
Patch size 14
Backbone ViT-B
Embedding dimensions 768

Decoder-1 Architecture Stable Diffusion
Model version 2.1

Decoder-2 Architecture MLP
No. of layers 3
Hidden dimensions 1536

Table 10. Training details for GLASS and GLASS†.

B. Training Details

Training dataset. GLASS and GLASS† are trained on im-
ages generated with a Stable Diffusion v2.1 [56] model. For
training the model on the COCO-generated dataset, we gen-
erate 100K images and their corresponding pseudo ground-
truth, obtained using COCO images and following the pro-
cess in Sec. 2 of the main paper. For training the model on
the VOC-generated dataset, we generate approximately 10K
images and their corresponding pseudo masks, obtained us-
ing VOC images following the process in Sec. 2 of the main
paper.

Architecture details. GLASS for the COCO and VOC
datasets is trained on a single NVIDIA A6000 Ada GPU.
The training time for COCO models is typically 4 days,
while for the VOC dataset, training is completed within two
days. GLASS and its variants use DINOv2 [51] with ViT-
B [41] and a patch size of 14 as its encoder model, and
Stable Diffusion (SD) v2.1 [56] as well as a three-layer MLP
network as its decoder models.

We train our model on the generated images in two phases.
In phase 1, only the slot attention module and the MLP
decoder are trained with an Adam [84] optimizer with a
constant learning rate of 2e-5. In phase 2, the slot attention
and MLP decoder module are trained with a learning rate
of 1e-8 (essentially frozen). At the same time, we train the
diffusion decoder with a learning rate of 4e-5 for the last
100K iterations.

Table 10 shows additional common details about the
hyper-parameters and modules used in GLASS and GLASS†.
When training on COCO-generated images, we train the
model for 500K iterations, while when training on VOC-
generated images, we train for 250K iterations. For the slot-
attention module, the number of slot iterations in the GRU
module is set to 5, and the number of slots is set to 7 for
the COCO-generated and the VOC-generated dataset for
GLASS. The slot size is set to 768; this configuration is akin
to StableLSD [32]. The number of heads in the slot-attention
module is set to 1, and a hidden size of 768 is used for
the MLP. The final MLP layer in the slot-attention module
projects the slots to a dimension of 1024.

Pseudo labels. While generating each training image, we
used Stable Diffusion’s cross-attention and self-attention
modules to extract the pseudo masks for the respective im-
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Model FG-ARI (%, ↑)

VOC COCO

SA∗ [45] NeurIPS’20 12.3 21.4
SLATE∗ [64] ICLR’22 15.6 32.5
DINOSAUR-MLP [62] ICLR’23 24.6 40.6
DINOSAUR-Trans. [62] ICLR’23 23.1 35.2
SPOT [36] CVPR’24 20.9 36.5
SlotDiffusion∗ [73] NeurIPS’23 17.8 37.2
StableLSD [32] NeurIPS’23 8.7 28.9
GLASS† (ours) 21.3 32.5
GLASS (ours) 22.5 34.1

Table 11. Comparison between OCL methods for the FG-ARI
metric. Here, our method is only behind DINOSAUR on the VOC
dataset and performs close to SPOT on the COCO dataset. Please
note that the FG-ARI metric is unreliable as it does not take into
account the shape of the predicted mask and also ignores the back-
ground, making it unsuitable for object discovery as seen by the
results in Fig. 10. * denotes numbers taken from [36].

age (as described in Sec. 4 of the main paper; we used the
same setup as in [87]). We used a range-based thresholding
to binarize these masks. Specifically, we assign a pixel to
the background if its objectness score (the max value among
all class scores of Mref, see Sec. 4) is below 0.4; conversely,
if this objectness score is above 0.6, we assign the pixel to
the foreground with the class label that has the max value. If
the objectness score lies between 0.4 and 0.6, we assign a
pseudo label of 255 (indicating that we are uncertain about
the class label). This uncertain region helps in only calculat-
ing the semantic loss on regions with high certainty, avoiding
uncertain regions.

B.1. Object-level property prediction
For the object-level property prediction task, we train a
single-layer linear model for label prediction and a single-
layer linear network for position prediction. We use early
stopping with a patience level set to 5 and train for 50 epochs
on the VOC dataset and 10 epochs on the COCO training
sets. For matching the labels to the correct slots during train-
ing, we utilize the idea from [15] and use the mIoU criterion
for matching labels to slots. Since the VOC training dataset
does not have instance masks, we compute the IoU criterion
using the semantic mask during training [62]. We use an
AdamW [86] optimizer with a constant learning rate of 3e-4.
For the position prediction task, we normalize the image
coordinates to lie between 0 and 1 by dividing the image
coordinates by the image size.

C. Comparison with FG-ARI Scores
Previous work in object-centric learning has regularly con-
sidered the FG-ARI metric for evaluation. The FG-ARI met-
ric is a version of the adjusted Rand index (ARI) [83, 88],
which measures the similarity between two different cluster-
ings in a permutation-invariant way by taking into account
the foreground regions in the image. However, the FG-ARI

Input SAMv2
(Under-segmentation)

SAMv2
(Over-segmentation)

Figure 7. Issue with SAMv2 masks as guiding signal. Automatic
segmentation using SAMv2 is very sensitive to the choice of hyper-
parameters, which makes it suffer from over- or under-segmentation
issues. Hence, automatic SAMv2 masks are not ideal as guidance
signal.

score is known to be an unreliable metric as discussed in
[18, 32, 36, 37]; it does not take into account background
pixels and does not account for the shape of predicted masks.
Please see [36] for further discussion. For completeness, we
nevertheless provide results for the FG-ARI metric in Tab. 11.
While our FG-ARI scores are lower than some baselines, par-
ticularly on the COCO dataset, we believe that this should
be mostly discounted due to the known deficiencies of this
evaluation metric. That said, our method is only behind DI-
NOSAUR on the VOC dataset and performs close to SPOT
on the COCO dataset for the FG-ARI metric. Additionally,
we refer to the comprehensive results for the mIoU and mBO
metrics in Tab. 2 and the SO-PO-GO metrics in Tab. 3 of the
main paper.

D. Guidance with SAMv2 Masks

Automatic segmentation using the SAMv2 model [55] re-
quires careful tuning of many hyperparameters. Using de-
fault parameters results in severe under-segmentation issues
(cf . Fig. 7, where the humans are segmented as backgrounds).
If we use a denser sampling of points, this results in an over-
segmentation of objects into their parts, see Fig. 7. These
issues make plain SAMv2 segmentation masks unsuitable
as guiding signals. We could overcome these issues with
additional input prompts, such as bounding boxes, but this
would make the annotation cost higher than simply using
generated captions or image-level labels.

E. Compositional Generation with StableLSD

StableLSD [32] struggles with compositional generation, as
shown in Fig. 8. StableLSD is not able to add or remove
objects from the original image; moreover, the quality of
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Add item Original image Edited image

Remove item Original image Edited image

Figure 8. Compositional generation with StableLSD [32]. The
quality of the image reconstruction is rather poor for StableLSD.
Moreover, the approach does not always remove the annotated item
from the image (row 3 and 5). Adding of an item to a new scene
also results in failure as is the case with (row 2). There is some
compositionality, which is exhibited by (rows 1 and 4), but the
quality of image reconstruction is poor and the edited image is not
faithful to the original image.

reconstruction and faithfulness of the input image is rather
poor for StableLSD compared to results of our method, as
shown in Figs. 12 and 13.

F. Additional Results

Additional qualitative results for object discovery. Fig. 10
shows additional qualitative results for object discovery.
GLASS decomposes the scene more cleanly and meaning-
fully than SotA OCL methods such as DINOSAUR [62], Sta-
bleLSD [32], and SPOT [36]. Images segmented by GLASS
have more precise boundaries, the background segmentation
is much cleaner, and the segmented regions do not split or
group objects.

Additional comparison to DatasetDiffusion. Going be-
yond Tab. 9 in the main paper, we additionally compare
GLASS to an extended variant of DatasetDiffusion [50],
which is trained with our 100K generated images for the
COCO dataset and uses a DINOv2 backbone network. This
extended variant of [50] achieves an mIoUc of 42.8 %, while
GLASS-Sem still achieves a higher score of 46.7 % on the

Src. Image Dst. Image GLASS Composable
Diffusion

Figure 9. Qualitative comparison for concept composition with
Composable Diffusion [85]. GLASS is able to extract and com-
pose concepts/slots from a source (Src.) and transfer them to a
destination image (Dst.) image to generate an image containing
concepts/slots from both images. We compare this to text-based
compositional models [85], where we compose the labels from
the two images, (row-1) “Pizza and Person”, (row-2) “BOWL
AND BOWL AND BANANA”, (row-3), “CUP AND CAKE AND
SANDWICH”, and (row-4) “CAT AND SINK” to generate an im-
age containing both concepts. As seen, our results have a higher
fidelity, more realism, and are more faithful to the concepts given.

COCO dataset. This suggests that our proposed architecture
and training scheme contribute significantly to the gains over
DatasetDiffusion [50].
Additional conditional generation results. Fig. 11 shows
additional results for the conditional generation of images
using StableLSD, GLASS†, and GLASS. Our method gen-
erates images that are more faithful to the input image and
have higher fidelity than StableLSD.
Additional compositional generation results. Figs. 12
and 13 show results from GLASS for compositional genera-
tion. In particular, we can see that we can add objects from
one scene to another. This is possible even when the context
is quite different, for example, adding a baseball player to
the bowl of food (Fig. 13 (row-1)). Also, we can remove
objects completely from a scene. Please note that, to our
knowledge, no other OCL method can perform these actions
with this fidelity or faithfulness.
Comparison to text-based compositional models. We
conduct a preliminary study of comparing GLASS for com-
positional generation against a text-based compositional gen-
eration method, namely Composable Diffusion [85], which
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Input DINOSAUR [62] StableLSD [32] SPOT [36] GLASS† (ours) GLASS (ours)

Figure 10. Qualitative comparison for object discovery. GLASS and GLASS† can decompose an image at the object level and do not split
an object into its parts or group objects belonging to the same class. Also, our approach yields cleaner boundaries for the foreground objects
compared to DINOSAUR [62], StableLSD [32], and SPOT [36].
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Original StableLSD [32] GLASS Original StableLSD [32] GLASS

s

Figure 11. Qualitative comparison for conditional image generation. GLASS and GLASS† not only learn to decompose scenes
meaningfully, but the learned slot can reconstruct the input scene more faithfully and with higher fidelity than StableLSD [32].
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Remove Item Original image Edited image Remove Item Original image Edited image

Figure 12. Compositional generation. GLASS enables the compositional image generation of real-world complex scenes. Here, the masked
object (in red) is the slot to be removed from the original image. The original image is the reconstructed image from the slots of the input
image.
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Added item Original image Edited image Added item Original image Edited image

Figure 13. Compositional generation. GLASS enables the compositional image generation of real-world complex scenes. Here, the masked
object (in red) is the slot to be added (Added item) to the original image resulting in the edited image.
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Num. of slots mIoUi mBOi

7 38.9 40.6
14 27.0 28.0
21 24.2 25.3

Table 12. Effect of number of slots on GLASS. As with all slot-
attention methods, GLASS is also sensitive to the number of slots
used in the slot-attention module.

composes objects/concepts via text-based prompts. For ex-
ample, “class label 1 — class label 2” generates an im-
age containing class labels 1 and 2. On the other hand,
GLASS is a compositional method that first extracts ob-
jects/concepts from an image and then generates the image.
Note: Both these models try to address the compositional
generation problem. However, they are not directly compara-
ble as GLASS relies on input images for extracting concepts
while Composable Diffusion uses the text. Fig. 9 shows that
GLASS can extract concepts/slots from one image and trans-
fer them to another to create a high-fidelity image, which
faithfully contains both concepts from the source and destina-
tion image. In contrast, [85] sometimes is unable to compose
certain concepts given in the text prompt, e.g., in Fig. 9 (top-
row) no person is generated for the prompt “PERSON AND
PIZZA”.

G. Additional Ablations

Effect of number of slots. We test the dependence of
GLASS on the number of slots in the slot-attention mod-
ule. GLASS is normally trained with 7 slots, consistent with
previous OCL models. Tab. 12 additionally shows results for
instance-aware object discovery task when GLASS is trained
with 14 and 21 slots. As seen, increasing the number of slots
leads to a decrease in mIoUi and mBOi, indicating that the
model cannot segment the objects correctly. This is because
if the number of objects is larger than the number of objects
in the scene, the scene is over-segmentated. The larger the
number of slots, the more slots bind to object parts.
Effect of caption-generation module. Table 13 shows an
analysis of the effect of the caption generation module on the
instance-aware object discovery task. GLASS uses a BLIP-2
[43] model. We also test the performance against a more
powerful captioning model, namely ShareGPT-4V [81], and
a simple template-based pipeline.

In the template-based pipeline, we first determine the em-
pirical probability of each class appearing in the image using
ground-truth class labels from the COCO dataset and the em-
pirical probability of a certain number of objects appearing in
a COCO image. Following this, we first sample the number
of objects and then sample class labels from the learnt object
occurrence distribution. After this, we populate the standard
template “A high-quality image of <obj(i)>, <obj(i+1)>
. . .<obj(k)>; <obj(i)> <obj(i+1)> . . .<object (k)>” us-

Caption type mIoUi mBOi

BLIP-2 38.9 40.6
ShareGPT-4V 38.3 40.7
Template-based 40.0 41.2

Table 13. Effect of caption generation method on GLASS. We
find that our method is robust to the choice of language module
to generate the captions. Interestingly, if we can access a ground-
truth object occurrence statistics dataset, a template-based caption
scheme outperforms learnt language-based methods.

ing the class labels of the sampled objects. Note: For this
template-based pipeline, no input image is needed for cap-
tion generation. However, the dataset statistics in terms of the
probability of occurrence of the objects and the probability
of a certain number of objects in an image are required.

We find that our approach is not very sensitive to the
particular choice of captioning model. Interestingly, the
template-based approach slightly outperforms both caption-
ing models, showing that we largely need to ensure that the
generated images possess the appropriate object occurrence
statistics.
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