PRaDA: Projective Radial Distortion Averaging

Supplementary Material

A. Implementation Details

Following best practices from COLMAP, we estimate initial
pairwise models in parallel with image matching. This adds
almost no overhead to the feature-matching process. Our
method then starts with already estimated pairwise models.
We implement the proposed method in C++. Unlike in in-
cremental reconstruction, the global approach allows paral-
lel computation of all components, providing true scalabil-
ity, so we parallelize every possible step. We use TBB [42]
for parallel execution on the CPU. Since all derivatives are
computed in closed form, a CUDA implementation is also
feasible but beyond the scope of the current work.

For the optimization phase of LO-RANSAC [9], we
compute the derivatives of the Sampson error with respect
to both cameras and fundamental matrix according to the
parameterization described in Sec. 4.2. Our experiments
show that, typically, ten iterations of local refinement are
sufficient. The weights in Eq. (16) are based on the area
covered by the matches. This way, the actual overlap be-
tween images is taken into account compared to the naive
number of inliers. This handles outlier cameras that may
occur after pairwise estimation. The final global refine-
ment (see Sec. 4.5) is done with analytical derivatives using
nonlinear solvers from ceres-solver [1]. We run it several
times, re-estimating the inliers between successive runs. In
the first pass of the global projective refinement, we fix the
camera centers and optimize only the distortions and fun-
damental matrices. The camera centers are then optimized
while all other camera parameters are fixed.

B. Performance by sequence length

We evaluate the performance of the proposed algorithm
on the ScanNet++ dataset under varying numbers of input
frames. For each sequence length NV, ranging from 2 to 40,
we randomly sample 1000 /V-frame subsequences (20 from
each of the 50 ScanNet++ test sequences). We then run our
method on each subsequence and plot the average focal-
adjusted reprojection error in Fig. 7. Frames are 5 frames
apart, relative to the original ScanNet++ frame rate.

Comparing with the full-sequence results in Tab. 1, we
observe that with 31 input frames, the proposed algo-
rithm achieves a mean error (1.0 px) lower than that of
Colmap [48, 49] (2.0 px) and Glomap [41] (1.8 px), even
when these methods process the entire frameset.
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Figure 7. Mean error for randomly sampled N-frame se-
quences: We study the behavior of the proposed algorithm with
different numbers of input frames. We sample 20 random se-
quences of frames for each number of frames configuration. We
find that 31 frames are sufficient to obtain a competitive 1px mean
error.

C. Distortion averaging for the multiplicative
model

Our radial distortion averaging formulation can be adapted
for any distortion parametrization dy(r). In terms of the
model parameters, 6, the associated optimization problem
(repeated here for convenience) is formulated as:

N R
0 = argmin Z wi / | do(r) — dg, (r)||> 7 dr-. (22)
LA
0

For our method, we use the divisional distortion model:
dg(r) = 1/hg(r), where hg(r) = Z?:o 0;r7 is a degree-k
polynomial with coefficients given by the vector 8. Primar-
ily because of the availability of the well-proven F10 solver
[30] and computationally efficient derivatives for the Samp-
son error [15, 44].

For the division model, Eq. (22) cannot be evaluated ex-
actly, so we optimize over a numerical discretization with
uniform spacing. Interestingly, it turns out that for the multi-
plicative distortion model, the average distortion as defined
by Eq. (22) corresponds to averaging the distortion param-
eters. That is:
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when dg(r) is parametrized as a degree-k polynomial:
dg(r) = he(r). To see this, let us rewrite Eq. (22) for the



multiplicative distortion model:
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To find the minimum, we take the derivatives of L(#) with
respect to the coefficients 6;:
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Rearranging and solving for C%Lt = 0 we get:

k k n
> Ay = s oAy Yoty @D
3=0 =17 =0 i=1

which in matrix form corresponds to
A = A0 (28)

where 0 is the weighted average parameter, as defined in
Eq. (23). Since A is invertible, we get that the solution to
Eq. (24) is # = #. In this case, 6 is independent of the ra-
dius R. This means that for multiplicative distortion model,
averaging across an image is equivalent to averaging across
the entire space of R?, including areas outside the image.



