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Visual Evidence and Intuition
(Sub-section 3.1.3 in the main paper body)

To accurately interpret Figure A (supplementary material)
and Figure 2 (main body), one must distinguish between two
types of black regions in the visualizations. In our DGN,
these black regions function purely as visualization place-
holders to maintain a uniform square format. In contrast,
in baseline GN with fixed 16-channel groups, black regions
represent actual channel suppression resulting from rigidly
grouping statistically heterogeneous channels.
Figure A demonstrates three key DGN advantages:
• Benchmark Robustness: DGN maintains channel sim-

ilarity within groups, showing superior performance in
long-tailed distributions (Figure Ac) and OOD detection
(Figure Ad).

• Architecture Versatility: Similarity-based grouping re-
mains effective across models of varying complexity, high-
lighting DGN’s model-agnostic benefits.

• Task Generalization: DGN adapts successfully across
diverse computer vision tasks from image classification to
object detection.

As evidenced in both figures, GN’s rigid approach forces
fixed-size groups that normalize statistically diverse chan-
nels together, causing significant feature degradation visible
as flat, textureless channels with near-complete darkening
or whitening. DGN’s similarity-driven grouping preserves
structural patterns and discriminative features, maintaining
robust representations.

General Hyper-parameters Calibration
(Sub-section 4.2.1 in the main paper body)

As discussed in the paper introduction, both GN and DGN
were mainly designed for small-batch analysis (Table A). To
ensure a fair comparison, we maintained the same batch sizes
across all normalization techniques while optimizing the
remaining hyperparameters detailed in section 4.2.1. These
parameters were tuned through grid search, starting from
standard literature values, to enhance performance under
small-batch conditions.
Through grid search optimization, we also established an
initial group size of CGdef = 16 channels for both GN and
DGN, aligned with the optimal value reported in [52]. While
GN maintained this fixed configuration throughout training,
DGN used it only as a starting point to calculate the total
number of groups before dynamically adapting their con-
tent based on channels’ statistics. Our adaptive approach

demonstrates superior stability, with DGN exhibiting only
0.26% maximal performance variation across different CGdef

values, compared to GN’s more substantial 1.79% variation,
highlighting DGN’s reduced sensitivity to initial parameter
settings.

Table A. Batch size settings for various models and benchmarks.
VT - visual transformer-based models, CNN - other convolutional-
based models.

Dataset Model-base Batch size

CIFAR-100 CNN 16
VT 8

Cityscapes CNN 4
VT 2

ImageNet CNN 16
VT 8

COCO YoloV5 8
YoloV9 4

Spatio-Temporal Group Adaptation
(Sub-section 5.1 in the main paper body)

Figure B provides additional examples of DGN’s spatio-
temporal adaptation of group size distributions for different
datasets and models. It illustrates how DGN adapts group
sizes in response to evolving feature statistics, optimizing
representation learning. The results highlight DGN’s abil-
ity to flexibly adjust groupings across diverse architectures,
including CNN-based and Transformer-based ones, rein-
forcing its generalizability across both classification and
segmentation tasks.

Analysis of Long-Tail Special Scenario
(Sub-section 5.5.1 in the main paper body)

Table B presents a detailed comparison of GN and DGN
under long-tailed data distributions. The results decisively
confirm DGN’s superior adaptability to various class-
imbalanced settings, illustrating its role as a highly effective
normalization strategy for real-world applications. Its robust
performance across architectures, class distributions, and
learning paradigms highlights its potential for enhancing
model’s performance in long-tailed scenarios:



Table B. Long-tailed ImageNet-LT. Superior results for each experiment are highlighted in bold. Many (classes with >100 images),
Medium (classes with 20-100 images), and Few (classes with <20 images). Regular font size numbers are the mean values over 3 weights
initializations, subscript - std values. All models were trained from scratch and were validated against literature.

Architecture Norm Many Medium Few All

MobilenetV3-small GN 56.060.51 32.530.34 10.580.34 38.200.19
DGN 58.620.44 34.390.16 11.810.33 40.580.41

EfficientNet-B3 GN 59.310.56 33.410.47 10.130.30 40.870.51
DGN 61.810.48 36.230.43 12.220.40 43.430.47

ResNet101 (BALLAD) GN 72.210.33 64.680.53 59.130.48 67.170.39
DGN 73.250.47 66.610.41 60.770.62 68.410.47

ViT-Base (BALLAD) GN 75.650.26 69.810.47 65.440.34 71.220.28
DGN 77.280.25 71.980.31 67.110.51 73.140.30

ViT-Base (LIFT) GN 76.090.39 72.140.33 67.400.40 73.670.32
DGN 78.670.22 74.910.17 70.020.32 76.330.26

• Model-Agnostic Benefits: DGN demonstrates strong
scalability across both lightweight models such as Mo-
bileNetV3 and EfficientNet-B3 and deeper state-of-the-art
Transformer-based architectures, achieving average accu-
racy gains of 2.06% and 2.29%, respectively. Its effective-
ness is evident regardless of model depth or parameter effi-
ciency. Furthermore, it enhances cutting-edge long-tailed
learning techniques such as BALLAD and LIFT, proving
its key role for class-imbalanced learning solutions.

• Class Distribution Analysis: DGN demonstrates robust
performance improvements across all class frequency cat-
egories, from well-represented (Many) to extremely un-
derrepresented (Few) classes, ensuring robust learning
across the dataset. DGN achieves an average accuracy
improvement of 2.06% across multiple architectures in
many-shot learning scenarios. Notably, it sustains high ac-
curacy gains even in relatively high accuracy that exceeds
75%. This demonstrates that DGN is not merely beneficial
for underrepresented classes but enhances performance
holistically, ensuring improvements across the entire data
distribution. In medium-shot settings, DGN consistently
outperforms GN, with an average accuracy boost of 2.25%.
Its strongest impact is observed in state-of-the-art LIFT
models, where it achieves a 2.77% gain, highlighting its
synergy with advanced class-imbalance strategies. Ad-
ditionally, DGN exhibits reduced variance compared to
GN, leading to greater model stability and more reliable
learning dynamics in medium-shot scenarios. For few-
shot learning, DGN maintains a 2.04% performance gain
even under severe class imbalance, where only a minimal
number of instances represent certain classes. Despite
the extreme data scarcity, DGN’s relative improvement
remains consistent with its benefits in many- and medium-
shot settings.
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Figure B. Spatio-Temporal group sizes adaptation. The red line
indicates GN with fixed group sizes, while the blue and green lines
represent DGN at different training epochs, demonstrating the spa-
tial and temporal group sizes changes during different regrouping
steps within the same layer. (a) CvT-13 on ImageNet, (b) Mo-
bileNetV3 on CIFAR-100, (c) SegFormer-MiT-B0 on Cityscapes.
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Figure A. Channel Groups Representation in DGN and GN. For each normalization (DGN and GN), a randomly selected group of channels
alongside its corresponding scatter plot are presented. Each point in the plot represents an individual channel’s statistics (mean, variance).
Results are shown across diverse architectures and datasets: (a) RevViT on CIFAR-100, (b) CvT-13 on ImageNet, (c) ResNet-101 (BALLAD)
on ImageNet-LT, and (d) YOLOv5L trained on PASCAL-VOC (In-Distribution) and evaluated on MS-COCO (Out-of-Distribution).


