
PCM : Picard Consistency Model for Fast Parallel Sampling of Diffusion Models

Supplementary Material

1. Experimental Setup
In this section, we provide detailed hyperparameter con-
figurations for Picard Consistency Training (PCT) on the
CelebA, Stable Diffusion, and PushT datasets.

All experiments in this paper were conducted on GPU
servers equipped with 8 NVIDIA GTX 3090 GPUs (each
with 24 GB VRAM) and 2 AMD 7313 CPUs. The imple-
mentations were built using the PyTorch v2.4.0 and CUDA
11.8 framework. The source code for our work is included
in the supplementary materials.

In Table 1, we summarize the hyperparameter configura-
tions for PCT in the image generation tasks. Additionally,
we applied Low-Rank Adaptation (LoRA) to all attention
layers in our 2D-UNet architecture. For the construction of
the training dataset for Stable Diffusion, we selected 20 ar-
bitrary prompts and extracted 10 images for each prompt.
For the CLIP score evaluation, we used 200 images gener-
ated from the prompts used during training and 300 images
generated from unused prompts.

Table 2 also provides the hyperparameter configurations
for PCT in the robotic control task, PushT. Moreover, the
diffusion model for the robotic task takes the observation as
input and predicts the action sequence over a defined action
horizon. The model then executes the predicted action and
uses the subsequent observation as input for the next step.
We set the action horizon to 8, with a maximum of 200 steps
in the action sequence generation. For this task, we use a
1D-state-based UNet and also apply LoRA to the attention
layers within the transformer blocks.

CelebA

dataset T K Solver
200 50 30 DDIM,DPMSolver

Optimizer learning rate scheduler epoch
Adam 1e-4 Cosine 50

Stable Diffusion v1.4

dataset T K Solver
200 30 15 DDIM

Optimizer learning rate scheduler epoch
Adam 1e-4 Cosine 10

Table 1. Hyperparameters for PCT in image generation tasks.

2. Procedure of emulating Newton’s method
As mentioned in the paper, our objective is to find the so-
lution to the fixed-point problem Φ(X∗) = X∗, where

PushT

dataset T K Solver
2000 50 30 DDIM

Optimizer learning rate scheduler epoch
Adam 5e-5 Cosine 200

Table 2. Hyperparameters for PCT in robotic control tasks.

x ∈ Rd and X = [x0, x1, . . . , xT−1] ∈ RT∗d. This fixed
point problem can be reformulate as root-finding problem
Ψ(X∗)−X∗ = 0. The inference of Φ,Ψ are defined as

Φ(X) = [x0, F (t1, x0), F (t2, x1), . . . , F (tT−1, xT−2)]
(1)

Ψ(X) = [0, x1 − F (t1, x0) . . . , xT−1 − F (tT−1, xT−2)]
(2)

Where F (·) is single inference of diffusion model. We
start by apply newton’s method to solve root-findinng prob-
lem Ψ(·):

Xk+1 = Xk − JXk [Ψ(Xk)]−1Ψ(Xk), (3)

where JXk [Ψ(Xk)] denotes the Jacobian matrix of
Ψ(Xk) with respect to Xk.

However, directly computing the Jacobian matrix and its
inverse becomes computationally prohibitive for large-scale
problems, such as diffusion models. For instance, in the
case of the CelebA dataset, d = 32 × 32 × 3 = 3072 and
T = 50, resulting in a Jacobian matrix of size (d · T)× (d ·
T) = 153600 × 153600, requiring approximately 700 GB
of memory to store the Jacobian matrix.

To implicitly emulate the Newton iteration, we start by
multiplying the Jacobian matrix on both sides:

JXk [Ψ(Xk)]Xk+1 = JXk [Ψ(Xk)]Xk −Ψ(Xk). (4)

Rearranging terms, we get:

JXk [Ψ(Xk)](Xk+1 −Xk) = −Ψ(Xk). (5)

In matrix form, this becomes:

∂F (t1,x

k
0)

∂xk
0

I 0 . . . 0

0
∂F (t2,x

k
1)

∂xk
1

I . . . 0

...
...

.
...

0 0 I

 ·

xk+1
1 − xk

1

xk+1
2 − xk

2
...

xk+1
T − xk

T

=

F (t1, x

k
0)− xk

1

F (t2, x
k
1)− xk

2
...

F (tT , x
k
T−1)− xk

T

(6)

solving this equation is equivalent as :

xk+1
ti+1

= F (ti+1, x
k
t) +

∂F (ti+1, x
k
ti)

∂xk
ti

(xk+1
ti − xk

ti) (7)

As shown in the equation, the computation of
∂F (ti+1,x

k
ti
)

∂xk
ti

(xk+1
ti − xk

ti) corresponds to a Jacobian-vector

product (JVP), which can be efficiently computed using au-
tograd frameworks such as PyTorch. By applying this equa-
tion and computing the JVP sequentially for each ti, we can
emulate single iteration of Newton’s method in O(T) se-
quential time with feasible computational resources.

Figure 1. [x]/(y) denotes [Method]/(Sequential Step)

3. Comparison with Distillation-based meth-
ods

We avoid direct comparison between PCM with distillation-
based methods(Distill), such as CM, DMD, and CTM, since
the two approaches have different goals. Distill sacrifices
diversity (and quality in some cases) for lower latency,
which generates different output from the source model due
to modified weights. See Fig.1(a)(source) and (e)(Distill).
This problem can be crucial in scenario where even minor
quality degradation is unacceptable, such as robotic control.
In contrast, PCM accelerates inference without any quality
degradation, as shown in Fig.1 (c). This exact convergence
property is guaranteed by the Picard theorem, making PCM
apart from typical optimization methods that trade latency
for quality. In fact, many parallel sampling works [1, 2] did
not compare against Distill for this reason. Furthermore,
PCM offers advantages in training cost: Distill typically re-
quires days, whereas PCM takes only an hour.

4. Effect of weight-mixing
In Table 3, we present the effects of weight mixing to
better highlight the novelty of PCM. As shown, without
weight mixing, the FID improvement of PCM over Picard
is marginal, even resulting in a higher FID score than the
naive Picard. However, when weight mixing is applied,
PCM achieves a significantly better FID score, outperform-
ing Picard.

LDM-CelebA (FID↓) k=1 k=2 k=3 k=4 k=5
Picard 382.48 257.83 109.67 60.82 42.66

PCM w/o Mix 124.93 76.75 63.54 54.46 50.07
PCM w. Mix 124.93 67.77 50.14 41.94 38.36

Table 3. Effect of Weight Mixing

5. Evaluation on various metric
In Table 4, we report the results of multiple evaluation met-
rics for generative models—including FID, sFID, IS, Pre-
cision, Recall, and CMMD—measured on LDM-CelebA
with k = 5. The results demonstrate that PCM consistently
outperforms both Picard and Sequential across all metrics,
except for IS, which is often considered noisy as it reflects
the variance of the generated images.

Methods FID↓ sFID↓ IS↑ Precision↑ Recall↑ CMMD↓
Sequential 375.08 54.75 2.57 0.00 0.00 4.95

Picard 42.66 20.36 3.07 0.43 0.37 1.95
PCM 38.36 15.13 2.76 0.44 0.42 1.71

Table 4. More metric evaluations

6. Pareto Front Comparison
In Fig. 2, we present a Pareto front comparison of Se-
quential(DDIM), Picard, and our proposed PCM, evaluated
based on their difference from the ground truth (GT) over
the same sequential iteration k. As illustrated in the fig-
ures, our PCM consistently outperforms all other methods
given the same number of sequential iterations, achieving a
complete Pareto front in both CelebA and Stable diffuison
dataset.

7. Limitation
In this study, we propose the Picard Consistency Model,
which significantly accelerates the convergence speed of
Picard Sampling. The primary limitation of our approach
is that it requires training, which incurs a higher computa-
tional cost compared to existing training-free acceleration
methods. However, our method does not require additional
datasets, completes training within relatively few epochs.
Also, since training is a one-time cost, PCM introduces no

0 5 10 15 20
k

100

200

300
FI

D
sc

or
e

DDIM(Sequential)
Picard
PCM

(a) CelebA

0 5 10
k

15

20

25

CL
IP

 S
co

re

DDIM(Sequential)
Picard
PCM

(b) Stable Diffusion

Figure 2. Pareto front comparison of diffrent sampling methods,
Sequeuntial, Picard and our PCM. Our PCM show consistent im-
provement in every iteration compared to oteher methods.

overhead during the inference. The second limitation of
our approach is a challenge shared by all parallel inference
methods: reducing latency necessitates increased computa-
tional resources and energy. However, considering the cur-
rent trend in computing, which is moving toward maximiz-
ing parallelism, we believe that parallel computation costs
will become less of a concern. Instead, reducing latency is
likely to deliver greater value in practice.

8. Additional Visualization Examples
In Fig. 3,4, we provide additional visual examples for
CelebA and Stable Diffusion, comparing the quality of im-
age generation using DDIM (Sequential), Picard, and our
proposed PCM. As shown in the figures, while DDIM and
Picard converge slowly during the initial iterations and pro-
duce inaccurate images, our PCM generates plausible im-
ages earlier and converges more quickly.

In Figures 5 and 6, we illustrate the action trajectories
of Picard and our PCM using three different random seeds
starting from k = 4. As shown in the figures, while Picard
fails to generate accurate motions in most cases, our PCM
successfully produces correct motions in nearly all scenar-
ios.

References
[1] Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh,

and Nima Anari. Parallel sampling of diffusion models. Ad-
vances in Neural Information Processing Systems, 36, 2024.
2

[2] Zhiwei Tang, Jiasheng Tang, Hao Luo, Fan Wang, and Tsung-
Hui Chang. Accelerating parallel sampling of diffusion mod-
els. In Forty-first International Conference on Machine Learn-
ing, 2024. 2

Figure 3. Stable Diffusion v1.4 Qualtitive comparison of DDIM(up-row), Picard (mid-row) and PCM(down-row) in same iteration k. The
prompt is ”a warrior in gleaming armor, standing on a battlefield, dramatic lighting, ultra realistic, intricate details, vivid, hdr, cinematic”.

Figure 4. CelebA Qualtitive comparison of DDIM(up-row), Picard (mid-row) and PCM(down-row) in same iteration k.

Figure 5. Generated action episode using Picard from k = 4, we randomly sample 3 epsiodes using different random seeds.

Figure 6. Generated action episode using PCM from k = 4, we randomly sample 3 epsiodes using different random seeds.

