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A. Training Details

We use a batch size of 4 for training. The learning rate is
set to 2 × 10−4 for the UNet [7] and 4 × 10−5 for the
text encoder. Training is conducted over 2000 steps, with
the first 100 steps dedicated to warmup, during which the
learning rate linearly increases from 0 to its specified value.
Throughout the training, images I and masks M are ran-
domly resized together by a factor between 1.0 and 1.125×
and then cropped back to their original size. Random masks
are generated using 30 boxes with side lengths randomly
chosen between 3% and 25% of the image size. We fine-
tune only the projection matrices of the text encoder and
UNet using LoRA [4] with a rank of 8. The dropout rate is
set to 0.1, and the LoRA scaling factor is set to 16. For the
[V ∗] token, we use the word “sks”. For the DefectFill loss,
we assign weights of 0.5, 0.2, and 0.05 to the defect loss, ob-
ject loss, and attention loss, respectively. The adjusted mask
M ′ used in the object loss calculation has α value set to 0.3.

B. Additional Qualitative Results

B.1. MVTec AD Dataset

We provide defect generation samples for all object and de-
fect categories in the MVTec AD [1] dataset. As illustrated
in Figs. S4 to S18, our method consistently generates realis-
tic and naturally filled defects across all cases. The first row
(blue box) displays the real defect images, while the sec-
ond row (green box) contains the defect-free images used
for defect generation. The third row presents the generated
defects using the masks shown in the bottom-right corner,
and the fourth row (red box) provides a zoomed-in view of
the generated defects.

B.2. VisA Dataset

We further apply our method to another anomaly detection
dataset, the Visual Anomaly (VisA) [9] dataset. Following
a similar approach to its application on MVTec AD dataset,
we train the model using pairs of anomalous images and
their corresponding masks (limited to the first 10 pairs per
object) and generate defects on defect-free images using un-
seen masks. As shown in Fig. S19, our method successfully
generates realistic defects across all object categories. This
highlights the robustness of our method in generalizing to a
variety of real-world defects.

Objects Ours w/o LFS Ours

KID↓ IC-LPIPS↑ KID↓ IC-LPIPS↑

bottle 33.57 0.12 30.99 0.12
capsule 5.01 0.17 5.60 0.18
carpet 50.39 0.21 50.37 0.22

hazelnut 1.86 0.31 1.13 0.31
leather 83.06 0.29 74.66 0.30

pill 16.22 0.22 8.76 0.23
tile 49.59 0.44 45.14 0.44

toothbrush 2.87 0.15 3.19 0.15
wood 7.05 0.35 4.72 0.35
zipper 35.23 0.21 34.91 0.20

Table S1. Generation Comparison with Low-Fidelity Selection.
The application of LFS demonstrates improvements in both qual-
ity (KID) and diversity (IC-LPIPS). The values represent averages
calculated for each defect category.
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Figure S1. Comparison to RealFill. This figure shows a com-
parison of defect generation quality with another inpainting-based
concept learning method, RealFill [8]. It fails to generate proper
defects, either reconstructing the original region or producing un-
realistic defects that are misaligned with the mask (upper images).
In contrast, DefectFill (ours) generates realistic and diverse defects
that align accurately with the mask (lower images).

C. Additional Quantitative Results

C.1. Low Fidelity Selection

Tab. S1 compares the quality (KID [2]) and diversity (IC-
LPIPS [6]) of generated defect images with and without
applying Low-Fidelity Selection (LFS). For diversity, ap-
plying LFS achieves the best performance across all objects
except for the zipper. In terms of quality, applying LFS im-



Objects DFMGAN† AnoDiff* AnoDiff‡ Ours

AUROC↑ AP↑ F1-max↑ AUROC↑ AP↑ F1-max↑ AUROC↑ AP↑ F1-max↑ AUROC↑ AP↑ F1 max↑

bottle 0.97 1.00 0.98 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
capsule 0.76 0.9 0.87 1.00 1.00 0.99 0.94 0.98 0.93 0.98 1.00 0.97
carpet 0.81 0.92 0.82 0.97 0.99 0.94 0.89 0.95 0.88 1.00 1.00 1.00

hazelnut 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.98 1.00 1.00 1.00
leather 0.94 0.97 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

pill 0.92 0.97 0.92 0.98 1.00 0.97 0.97 0.99 0.95 0.97 0.99 0.95
tile 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

toothbrush 0.97 0.98 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
wood 0.89 0.94 0.87 0.98 0.99 0.99 0.98 0.99 0.98 1.00 1.00 1.00
zipper 0.99 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99

Table S2. Image-Level Detection Comparison. The table presents AUROC, AP, and F1-max scores for image-level anomaly detection
evaluation using a UNet trained on generated defect images. Our method achieves the highest performance across most metrics and objects.
The labels are defined in Tab. 2.

w/o Lobj w/o Ldef w/o Lattn Ours

KID↓ IC-LPIPS↑ KID↓ IC-LPIPS↑ KID↓ IC-LPIPS↑ KID↓ IC-LPIPS↑

26.26 0.25 67.34 0.23 26.51 0.24 25.95 0.25

Table S3. Results when each loss term is removed during training.

proves the KID score for all objects except the capsule and
toothbrush.

C.2. Detection
Similar to the evaluation of the anomaly localization task
(Tab. 2), we also evaluate our method on the image-level
anomaly detection task, comparing it with defect generation
baselines (DFMGAN [3], AnomalyDiffusion [5]). Tab. S2
shows our method achieves the best scores in most cases.
Even in instances where it does not achieve the best score, it
consistently performs well, with all scores exceeding 0.95.

C.3. Loss Ablation
Tab. S3 shows the evaluation results on the MVTec dataset
after removing each loss term during training. Notably, re-
moving Ldef causes a significant increase in KID. Using all
terms achieves the best scores for both KID and IC-LPIPS.

D. Comparison to RealFill
To demonstrate DefectFill’s ability to learn defect fea-
tures and generate realistic defects, we compare it with
another inpainting-based concept learning method, Real-
Fill [8]. While RealFill focuses on filling erased regions in
a single target image, making it less suitable for defect gen-
eration tasks required in visual inspection, this comparison
highlights the superior generation quality of DefectFill. As
shown in Fig. S1, RealFill (upper images) fails to gener-
ate proper defects, often reconstructing the original region
or producing unrealistic defects that are misaligned with
the mask. In contrast, our method (lower images) generates
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Figure S2. Failure Cases. DefectFill struggles with structural de-
fects affecting the entire object. For the metal nut (top), the mask
covers the flipped nut itself, so the model learns its appearance
rather than its orientation. For the transistor (bottom), inpainting
replaces the defect-free object, creating a stochastic mix of defect
features, though it often generates proper defects (green box).

defects that are both realistic and diverse, while precisely
aligning with the mask’s shape. This highlights not only the
importance of leveraging an inpainting diffusion model but
also the crucial role of our defect-specific loss, which is tai-
lored for inpainting diffusion models.

E. Failure Cases

As discussed in the conclusion, our method excels at gen-
erating local defects but is less effective at handling global
structural defects. Fig. S2 illustrates failure cases of struc-
tural defects from the MVTec AD dataset. For the metal
nut’s flip defect (upper part of Fig. S2), both the refer-
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Figure S3. Transferring defects across different objects. The
figure illustrates the results of generating hole defects in different
objects after learning the features of a hole defect from a hazelnut.
Defect transfer can occur when the defect features are general and
plausible in the context of other objects.

ence defect image and mask represent the entire flipped
nut. This causes the model to learn the flipped nut’s ap-
pearance rather than the direction of the flipped teeth as
a defect feature. Consequently, when generating a flipped
nut from an unflipped one, the teeth’s direction remains un-
changed, and the model instead fills the appearance aligning
with the mask shape. For the transistor’s misplaced defect
(lower part of Fig. S2), the scenario differs. The mask in-
cludes both the original and misaligned positions, enabling
the model to learn misalignment features. However, the mis-
placed defect involves not only misaligned cases but also
missing ones. In this situation, the inpainting process en-
tirely removes the transistor from the original position and
generates a new defect. This results in the loss of semantic
information from the defect-free object, causing stochastic
appearances of defect features representing both misaligned
and missing cases. As shown in Fig. S2, the generated de-
fects manifest as complete transparency, semi-transparent
alignment, semi-transparent misalignment (red boxes), or
proper misalignment (green box). Addressing these global
structural defects is left for future research. Nevertheless,
our method demonstrates strong performance in handling
most practical cases, where localized defects are the pri-
mary focus in real-world scenarios.

F. Transferring Defects across Objects
We observe that if a defect in one object exhibits general
features, it can be generated in other objects where such
a defect is plausible. As shown in Fig. S3, after learning
the hole defect from a hazelnut, our method successfully
generates similar defects in various defect-free objects (e.g.
leather, zipper, wood, and tile).
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Figure S4. Defect generation results on MVTec AD dataset (object: bottle).
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Figure S5. Defect generation results on MVTec AD dataset (object: cable).
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Figure S6. Defect generation results on MVTec AD dataset (object: capsule).
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Figure S7. Defect generation results on MVTec AD dataset (object: carpet).
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Figure S8. Defect generation results on MVTec AD dataset (object: grid).
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Figure S9. Defect generation results on MVTec AD dataset (object: hazelnut).
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Figure S10. Defect generation results on MVTec AD dataset (object: leather).
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Figure S11. Defect generation results on MVTec AD dataset (object: metal nut).
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Figure S12. Defect generation results on MVTec AD dataset (object: pill).
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Figure S13. Defect generation results on MVTec AD dataset (object: screw).



Reference
Defect

Defect-free

Generated 
Defect

Zoomed-in

Figure S14. Defect generation results on MVTec AD dataset (object: tile).
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Figure S15. Defect generation results on MVTec AD dataset (object: toothbrush).
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Figure S16. Defect generation results on MVTec AD dataset (object: transistor).
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Figure S17. Defect generation results on MVTec AD dataset (object: wood).



Reference
Defect

Defect-free

Generated 
Defect

Zoomed-in

Figure S18. Defect generation results on MVTec AD dataset (object: zipper).
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Figure S19. Defect generation results on VisA dataset.
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