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A. Appendix
This supplementary material provides additional descrip-
tions of the proposed MomAD framework, including the
following supplementary material:
• Appendix A.1: Summary of contributions.
• Appendix A.2: The details of Turning-nuScenes dataset.
• Appendix A.3: Implementation details.
• Appendix A.4: More planning results.
• Appendix A.5: Detailed Result Analysis on Robustness.
• Appendix A.6: More visualizations of planning results.

A.1. Contributions

Our contributions are summarized below.
1) MomAD Framework. We propose MomAD, an end-
to-end autonomous driving framework that employs mo-
mentum planning. Momentum planning leverages trajec-
tory and perception momentum to enhance current planning
through historical guidance, overcoming temporal inconsis-
tency. It addresses key challenges in planning stability and
robustness for end-to-end autonomous driving systems.
2) TTM and MPI. We propose the Topological Trajectory
Matching (TTM) module, which utilizes the Hausdorff Dis-
tance to align candidate trajectories with past paths, en-
suring temporal coherence and reducing abrupt trajectory
changes. Furthermore, we propose the Momentum Plan-
ning Interactor (MPI) module. By cross-referencing current
and past trajectory data, this module expands the system’s
perceptual awareness over time, enhancing long-horizon
prediction and reducing collision risks.
3) New∗ Turning-nuScenes Validation Dataset. We cre-
ate the Turning-nuScenes val dataset, derived from the
nuScenes full validation dataset. This new dataset focuses
on turning scenarios, providing a specialized benchmark for
evaluating the performance of autonomous driving systems
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in complex driving situations.
4) New∗ Trajectory Prediction Consistency (TPC) Metric.
We introduce the TPC metric to quantitatively assess the
consistency of trajectory predictions in existing end-to-end
autonomous driving methods, addressing a critical gap in
the evaluation of trajectory planning.

A.2. The Detail of Turning-nuScenes dataset

When turning, vehicles need to quickly and accurately ad-
just their direction, making turning scenarios particularly
challenging for the model’s ability to maintain stable plan-
ning. However, there is currently no dataset specifically de-
signed for evaluating models in turning scenarios. Based
on the nuScenes val dataset, we selectively extracted data
involving the ego vehicle in turning situations from the val-
idation set to create the Turning-nuScenes dataset.
1) Preparation Work. We extract the data information
from the val dataset based on the annotations of NuScenes
dataset. Specifically, we establish a correspondence be-
tween sample token (the unique identifier of each sam-
ple) and scene token (the unique identifier of each scene)
grounded in the provided data annotation information as il-
lustrated in formula 1. We also extracted the future trajec-
tory Tfut of the ego vehicle for each sample in the validation
dataset over the next three seconds.

dictscsa[sample token] = scene token (1)

2) Sample Select. Considered that the ego vehicle’s driv-
ing direction aligns with the y-axis of the world coordinate
system, significant changes in the x-coordinate will occur
during turns. Thus, we assess potential future turns of the
ego vehicle based on changes in its x-coordinate, recording
the unique identifier of each sample (sample token). The
specific criteria for judgment are as outlined in the formula
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2, {
ST |Tfut[0]− Tfut[5]| ≥ ε

SS |Tfut[0]− Tfut[5]| < ε
(2)

where ST and SS represent the states of the ego vehicle
during turning and going straight, respectively. And ε rep-
resents the judgment threshold, with a default setting of 25.
3) Generate Dataset. After sample select, we obtained
a series of sample tokens associated with turning scenar-
ios, denoted as sample tokenselect. Based on the mapping
relationship dictscsa from scene token to sample token, we
derive a series of driving scenarios involving the ego ve-
hicle’s turning maneuvers. The Turning-NuScene dataset
comprises 17 scenes with 680 samples and includes diverse
urban turning scenarios, such as intersections, T-junctions,
roundabouts, traffic islands, and alleyway turns. The vi-
sualization of some data from Turning-nuScenes dataset is
shown in Fig. 1.

A.3. Implementation Details

The training process of MomAD is divided into two stages
following SparseDrive [7]. In stage 1, we train the sparse
perception module, including 3D object detection, multi-
object tracking, and online mapping, from scratch to learn
sparse scene representations. In stage 2, we train the sparse
perception, motion, and planning modules without freezing
the weights of the sparse perception module. For MomAD,
we use ResNet50 [2] as backbone network and the input im-
age size is 256 × 704. For detection, the perception range
is a circle with a radius of 55m. For online mapping, the
perception range is 60m × 30m longitudinally and later-
ally. For motion and planning, the number of stored frames
H in the instance memory queue is set to 3, and the num-
ber of modes Km in motion is set to 6, accounting for six
trajectory proposals. All experiments are conducted on 8
NVIDIA RTX 4090 24GB GPUs.
Stage-1 Overall Objectives. In alignment with
SparseDrive [7] and VAD [5], MomAD does not en-
force tracking constraints during the identity assignment
process. As a result, we do not include a tracking loss
in our framework. The loss function for the supervised
process during the first phase is defined as follows,

L1 = LD + LM. (3)

Stage-2 Overall Objectives. MomAD is trained utilizing
the losses from all tasks, which include 3D object detection,
multi-object tracking, online mapping, motion prediction,
and planning. This training is conducted over a duration of
10 epochs, employing a total batch size of 48 and a learning
rate of 3×e−4. The loss function for the supervised process
during this stage is defined as follows,

L2 = LD + LM + LMP. (4)

Detection Loss. The detection loss is formulated as a linear
combination of the Focal Loss [6] for classification and the
L1 Loss for box regression.

LD = λcLDc + λrLDr, (5)

which λc and λr are set to 2 and 0.25, respectively.
Online Mapping Loss. In accordance with VAD [5] and
SparseDrive [7], we define the online mapping loss as the
following equation,

LM = λcLMc + λrLMr, (6)

which λc and λr are set to 1 and 10, respectively.
Motion and Planning Loss. We compute the average dis-
placement error (ADE) between the multi-modal outputs
and the ground truth trajectory. The trajectory with the
lowest ADE is designated as the positive sample, while the
remaining trajectories are treated as negative samples. In
addition, for the planning component, the ego state is also
predicted. We employ Focal Loss for classification and L1
Loss for regression,

LMP = λm
c LMOc + λm

r LMOr + λp
cLpc + λp

rLpr + λp
sLs

(7)
which λm

c and λm
r are set to 0.2 and 0.2, λp

c , λp
r and λp

s are
set to 0.5, 1.0 and 1.0, respectively.

A.4. More Planning Results

We have extended the results of Tables 2 and 3 in the
main by including UniAD [4] and VAD [5] to provide ad-
ditional experimental data. As shown in Tables 1 and 2, our
conclusion is consistent with those presented in the main
text: end-to-end autonomous driving methods represented
by UniAD [4], VAD [5], and SparseDrive [7] suffer chal-
lenges in turning scenarios. Our TPC metric demonstrates
issues of robustness in temporal consistency, as these meth-
ods enable seamless integration of perception and planning
but often rely on one-shot trajectory prediction, which may
lead to unstable control and vulnerability to occlusions in
single-frame perception. Overall, our proposed MomAD
addresses key challenges in planning stability and robust-
ness for end-to-end autonomous driving systems.

A.5. Detailed Result Analysis on Robustness

As shown in Table 3, we furthur evaluated MomAD on
nuScenes-C [1], which benchmarks robustness against di-
verse corruptions including extreme weathers. Our Mo-
mAD consistently outperforms SparseDrive across all tasks,
by 22.9% (detection), 27.1% (tracking), 25.1% (mapping),
24.2% (motion), and 40.0% (planning) on average. These
results highlight the robustness of MomAD against various
noise perturbations.
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Figure 1. Visualization of turning scenarios in the Turning-nuScenes dataset. “LIDAR TOP” represents the visualization of the cor-
responding scene from BEV. While “CAMERA FRONT” refers to the images captured by the front camera of the ego vehicle in the
respective scene.

Table 1. Planning results on the Turning-nuScenes validation dataset. UniAD [4] and VAD [5] are SOTA end-to-end deterministic
planning methods. SparseDrive [7] is a SOTA end-to-end multi-modal trajectory planning method. Red indicates improvement. We
follow the ST-P3 [3] evaluation metric.

Method
L2 (m) ↓ Col. Rate (%) ↓ TPC (m) ↓

1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg.

UniAD [4] 0.52 0.88 1.64 1.01 0.16 0.51 1.41 0.69 0.47 0.81 1.58 0.95
VAD [5] 0.48 0.80 1.55 0.94 0.07 0.41 1.20 0.56 0.38 0.78 1.51 0.89
SparseDrive [7] 0.35 0.77 1.46 0.86 0.04 0.17 0.98 0.40 0.34 0.70 1.33 0.79
MomAD (Ours) 0.33-0.02 0.70-0.07 1.24-0.22 0.76-0.10 0.03-0.01 0.13-0.04 0.79-0.19 0.32-0.08 0.32-0.02 0.54-0.16 1.05-0.28 0.63-0.16

Table 2. Long trajectory planning results on the nuScenes and
Turning-nuScenes validation sets. We train models for 10 epochs
for 6s-horizon prediction. T-nuScenes indicates the challenging
Turning-nuScenes. We follow the ST-P3 [3] evaluation metric.

Split Method
L2 (m) ↓ Col. Rate (%) ↓ TPC (m) ↓

4s 5s 6s 4s 5s 6s 4s 5s 6s

nuScenes

UniAD [4] 1.91 2.57 3.21 0.91 1.66 2.51 1.49 1.81 2.41
VAD [5] 1.82 2.23 3.01 0.89 1.71 2.41 1.55 1.73 2.17
SparseDrive [7] 1.75 2.32 2.95 0.87 1.54 2.33 1.33 1.66 1.99
MomAD 1.67 1.98 2.45 0.83 1.43 2.13 1.19 1.45 1.61

-0.09 -0.34 -0.50 -0.04 -0.11 -0.20 -0.14 -0.21 -0.38

T-nuScenes

UniAD [4] 2.45 2.98 3.76 1.21 1.99 3.25 1.81 2.75 3.42
VAD [5] 2.27 2.87 3.46 1.08 1.86 2.81 1.68 2.56 3.21
SparseDrive [7] 2.07 2.71 3.36 0.91 1.71 2.57 1.54 2.31 2.90
MomAD 1.80 2.07 2.51 0.85 1.57 2.31 1.37 1.58 1.93

-0.27 -0.64 -0.85 -0.06 -0.14 -0.26 -0.17 -0.73 -0.97

Table 3. Robustness analysis on nuScenes-C [1].

Scene Method
Detection Tracking Mapping Motion Planning

mAP ↑NDS ↑AMOTA ↑ mAP ↑ mADE ↓L2 ↓Col. ↓TPC ↓

Clean
SparseDrive 0.418 0.525 0.386 55.1 0.62 0.61 0.08 0.57
MomAD 0.423 0.531 0.391 55.9 0.61 0.60 0.09 0.54

Snow
SparseDrive 0.140 0.161 0.133 22.3 0.95 0.85 0.30 0.79
MomAD 0.172 0.195 0.169 27.9 0.72 0.71 0.18 0.66

Rain
SparseDrive 0.232 0.254 0.198 30.7 0.96 0.87 0.31 0.83
MomAD 0.270 0.293 0.222 34.8 0.71 0.67 0.18 0.67

Fog
SparseDrive 0.294 0.312 0.260 41.2 0.93 0.84 0.36 0.80
MomAD 0.348 0.356 0.299 43.2 0.68 0.64 0.19 0.61

A.6. More Qualitative Study of Planning Results

To better illustrate the exceptional planning capabilities of
MomAD, we selected planning results from complex traf-
fic scenarios for visualization, such as turning maneuvers
and congested scenes. We provide three qualitative results:
(1) planning for 3s trajectory prediction, (2) planning for



Figure 2. Visualization results (Planning for 3s Trajectory Prediction). We visualize results for detection, online mapping, motion predic-
tion, and planning. MomAD demonstrates stable and temporally consistent planning across various complex turning scenarios, especially
in crowded environments. For motion prediction, we present the model’s selected trajectory from multi-modal proposals, with each trajec-
tory spanning a 6-second duration. For planning, the selected (optimal) trajectory is visualized in red, alongside two suboptimal (proposal)
multi-modal trajectories in gray.

6 trajectory prediction, and (3) trajectory prediction across
multiple frames.
(1) Planning for 3s Trajectory Prediction. Consistent
with most end-to-end autonomous driving methods, we pro-
vide conventional 3-second prediction results, including the
selected optimal trajectory and multi-modal proposal trajec-
tory, as well as the optimal motion trajectory. As shown in
Fig. 2, MomAD performs well across various turning sce-
narios, successfully executing large-angle turns without any
collisions.
(2) Planning for 6s Trajectory Prediction. Unlike most

end-to-end autonomous driving methods, we offer long-
horizon trajectory predictions with a 6-second horizon. As
depicted in Fig. 3, even under more challenging conditions,
MomAD maintains superior planning performance. Specif-
ically, the predicted trajectory remains smooth and consis-
tent even over a long-horizon trajectory. This strong perfor-
mance can be attributed to the proposed MomAD’s effective
use of historical trajectory data. By incorporating past tra-
jectories, MomAD is able to predict and adapt to dynamic
changes in the environment, ensuring smoother navigation
and more accurate decision-making during turns.



Figure 3. Visualization results (Planning for 6s Trajectory Prediction). Long-horizon trajectories often face greater temporal consistency is-
sues. We present 6-second trajectory prediction results to demonstrate how MomAD addresses these inconsistencies. Despite the increased
challenge of long-horizon trajectories, MomAD continues to exhibit robust and stable performance. For motion prediction, we show the
trajectory with the highest score from the model’s output, each spanning 6 seconds. For planning, the selected (optimal) trajectory is
visualized in red, accompanied by two suboptimal (proposal) multi-modal trajectories in gray.

(3) Trajectory Prediction across Multiple Frames. As
shown in Figure 4, we present two multi-frame qualitative
results to highlight the consistency and robustness of the
proposed MomAD method. In the turning scenario, Mo-
mAD generates a smooth and accurate trajectory, demon-
strating its ability to avoid oscillatory behavior during the
planning process—a critical factor for ensuring driving
safety. In conclusion, the visual results clearly illustrate the
superior performance of MomAD in trajectory planning.
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