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Learning Endogenous Attention for Incremental Object Detection

Supplementary Material

The supplementary material is organized as follows:001
Section 1 introduces more experimental setup, Section 2002
provides more experimental results on VOC 2007, Section 3003
presents additional ablation studies, Section 4 includes fur-004
ther visualization results, and Section 5 provides the Py-005
Torch implementation of our code.006

1. More experimental setup007

Datasets. We conduct IOD experiments on MS COCO008
2017 and Pascal VOC 2007 datasets, which are widely used009
in previous IOD works. The COCO 2017 consists of 80 di-010
verse classes across 118,000 images for training and 5,000011
images for testing. These classes are strategically divided012
based on our experimental protocols. The VOC 2007 con-013
tains 20 distinct classes and 9,963 images, with 50% of014
them allocated for training and the other half reserved for015
testing.016
Distribution of image task IDs. In Figure S1(left), we il-017
lustrate the task ID distributions on the COCO dataset with018
different data splits, which shows that about 30–40% im-019
ages contain multiple task IDs. Our ETM infers multiple020
task IDs by assigning each image to tasks with low en-021
ergy. Figure S1(right) compares performances of our LEA022
with the state-of-the-art ABR method to further demon-023
strate the superiority of LEA when the task number in-024
creases (i.e., 40 + 40 −→ 40 + 2 × 20 −→ 40 + 4 × 10),025
wherein LEA steadily and significantly outperforms ABR026
by a large margin (at least 5% improvement), and the per-027
formance decrease of LEA is much slighter than the ones028
of ABR (41.2 → 39.9 → 39.3 v.s. 36.2 → 32.7 → 31.2).029
Thus, our LEA 1) is a simple yet efficient method that is030
technically capable of handling multiple task IDs in a single031
image and 2) significantly outperforms the SOTA method032
when the task number increases.033
Evaluation indicators of ETM. We employ precision (P ),034
recall (R), and F1 scores to assess the accuracy of the task035
ID predictions generated by ETM. Specifically, P reflects036
the proportion of correctly predicted positives among all037
samples labeled as positive by the model. R, on the other038
hand, quantifies the model’s ability to identify true posi-039
tive examples from all actual positive examples. The F1040
score, as the harmonic mean of precision and recall, offers a041
balanced perspective, comprehensively evaluating both as-042
pects:043

P =
TP

TP + FP
, (1)044

045

R =
TP

TP + FN
, (2)046

Figure S1. Supplementary to Section 4.1 (main paper). Task ID
distributions on the COCO dataset with different data splits.

047

F1 =
2

1
P + 1

R

=
2 ∗ P ∗R
P +R

, (3) 048

where True Positives (TP ) signify samples where both the 049
model’s prediction and the actual value are positive, indi- 050
cating a correct prediction of a positive sample. False Pos- 051
itives (FP ) occur when the model predicts a positive out- 052
come, but the actual value is negative, resulting in an in- 053
correct prediction of a positive sample. Conversely, False 054
Negatives (FN ) arise when the model predicts a negative 055
outcome for an actually positive example, misclassifying a 056
positive sample as negative. 057
Energy-based Task Modulator Setup. 1) Baseline 058
method: We use a frozen pre-trained ViT-B/16 as the shared 059
backbone and train a prompt and a linear classifier for 060
each task. The prompt and backbone outputs are concate- 061
nated and fed into the classifier. 2) Loss function: Each 062
task is trained using Binary Cross-Entropy loss: L(x, y) = 063
−[y · log(σ(x)) + (1 − y) · log(1 − σ(x))], where x are 064
output logits, y are labels, and σ is the sigmoid function. 065
3) Classifier extension: All existing prompts and classifiers 066
are frozen to preserve old knowledge, while a new prompt 067
and a new classifier are added for each new task. 068

2. More results on VOC 2007 069

More comparison methods. In Table S1, we compare 070
more methods on the VOC 2007 dataset, including two 071
model-expansion-based IOD methods—MultIOD [1] and 072
DIODE [7], ABR [6], ABR combined with pseudo-labels 073
(ABR+PL), and the performance upper bound (fully su- 074
pervised training). Among them, MultIOD and DIODE 075
achieve incremental learning by expanding the detection 076
head of the model. From the table, it can be observed that 077
our LEA method significantly outperforms these compara- 078
tive methods. Additionally, integrating pseudo-labels (PL) 079
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Method Baseline 15 + 5 10 + 10 5 + 3× 5

Upper Bound ViTDet 80.3 80.3 80.3

MultIOD [1]

ViTDet

67.8 66.4 59.0
DIODE [7] 63.5 62.6 56.7
ABR 67.7 66.8 59.8
ABR+PL 68.2 67.1 58.5
LEA (Ours) 73.5 72.2 63.3

Table S1. Supplementary to Table 3 (main paper). More compari-
son results on VOC 2007.
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Figure S2. Supplementary to Table 3 (main paper). Experimental
results (AP50) in the multi-task settings of the VOC 2007 dataset.

predicted by the old model into ABR only yields a marginal080
improvement. This is because, although pseudo-labels alle-081
viate the label conflict issue, they also introduce additional082
noisy annotations. Therefore, simply combining pseudo-083
labels with existing methods is not an effective solution to084
the IOD problem.085

Detailed results of two-task settings. In Table S2, we086
present comprehensive experimental results, including the087
AP50 for each category, the average performance across all088
categories, and the additional detector memory (MB) re-089
quired by our method in the 15 + 5 and 10 + 10 settings.090
To be specific, Old(·) denotes an old model trained on data091
from old classes, while Fine-tuning represents fully super-092
vised training on new classes, leading to overfitting new093
classes and severe forgetting of old classes. In the 15 + 5094
setting, our proposed LEA outperforms all previous meth-095
ods, with an average AP50 surpassing the second-best OSR096
by 4.0%. Notably, our method only requires saving a min-097
imal additional detector memory of 0.2 MB in this setting,098
outperforming previous methods that rely on storing rep-099
resentative samples. Similarly, in the 10 + 10 setting, our100
method maintains its superiority, surpassing the second-best101
ABR by 1.3% in average AP50, while only consuming 0.9102
MB additional detector memory.103

Detailed results of multi-task settings. Figure S2 presents104
the detailed comparison results (AP50) in multi-task set-105

tings of VOC 2007. The horizontal axis represents the av- 106
erage accuracy across previously learned categories. It is 107
noticed that starting from the same accuracy in task 1, our 108
method consistently outperforms the comparison method 109
throughout the incremental process, demonstrating LEA’s 110
suitability for practical multi-task scenarios. 111

3. More ablation results 112

3.1. Classification accuracy for objects of different 113
sizes. 114

We evaluate the classification F1 score of our ETM 115
module on VOC and COCO datasets at different sizes 116
(small/medium/large). Since classification models cannot 117
predict objects’ size, in Table S3, we select three subsets for 118
COCO and VOC, respectively, each containing only smal- 119
l/medium/large objects, to evaluate the F1 score. It shows 120
that our ETM achieves comparable accuracy on small and 121
medium objects compared to large ones, indicating the ca- 122
pability of our method in handling small/medium objects. 123

3.2. Sensitivity of hyper-parameter γ 124

As described in Section 3.4 of the main paper, γ is a hyper- 125
parameter related to the threshold τ to determine whether a 126
test image belongs to a certain task. To determine the ap- 127
propriate γ, in Table S4, we analyze the effect of ETM’s 128
hyper-parameter γ on the detection results in the 40 + 40 129
setting of COCO 2017. From the table, it is evident that 130
γ = 1 yields the optimal F1 score. However, when γ is 131
reduced to 0.1, P decreases, R increases, and AP also im- 132
proves. This indicates that recall is more associated with 133
model accuracy, whereas precision plays a crucial role in 134
accurately selecting task IDs, thus reducing inference time. 135
Further reducing γ to 0.01 results in unchanged AP with a 136
slight decrease in P . Therefore, to minimize inference time 137
while preserving accuracy, we set γ = 0.1 in our experi- 138
ments. Additionally, compared to Oracle (i.e. ground truth 139
task IDs), our ETM only incurs a minimal loss of 1.6% in 140
AP and 2.4% in AP50, proving its efficacy. 141

3.3. Effect of parallel and series EAM 142

In Table S5, we compare the experimental results achieved 143
by the parallel structure EAMs (illustrated in Figure S3) and 144
the series structure used in the main paper, in the 10+10 set- 145
ting of VOC 2007. Notably, the table reveals that the series 146
structure outperforms the parallel structure. This superiority 147
can be attributed to the series structure’s ability to capitalize 148
on the abundant feature representations generated by multi- 149
head attention and further refine them through subsequent 150
layers, facilitating the model’s enhanced focus on new cat- 151
egory objects. Conversely, the parallel structure loses these 152
rich feature representations produced by the multi-head at- 153
tention, thus hindering the model’s overall performance. 154
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15 + 5 Setting Baseline aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv AP50 Mem.

Old(1-15) ViTDet 88.8 82.2 78.4 64.7 63.6 88.5 88.0 89.5 63.6 81.9 79.6 88.4 89.3 82.7 79.8 - - - - - 60.5 -

Fine-tuning ViTDet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.4 40.0 60.1 61.8 70.4 13.5 -
Yang [8] Faster R-CNN 66.8 74.9 69.7 51.8 52.4 64.4 82.1 83.2 46.7 73.7 62.2 80.8 83.2 76.7 75.9 39.0 64.3 61.9 67.0 64.0 67.0 -

OWOD [3] Faster R-CNN 75.4 81.0 67.1 51.9 55.7 77.2 85.6 81.7 46.1 76.2 55.4 76.7 86.2 78.5 82.1 32.8 63.6 54.7 77.7 64.6 68.5 58
Joseph [4] Faster R-CNN 78.4 79.7 66.9 54.8 56.2 77.7 84.6 79.1 47.7 75.0 61.8 74.7 81.6 77.5 80.2 37.8 58.0 54.6 73.0 56.1 67.8 13
OSR [9] Faster R-CNN 75.8 76.4 72.2 54.1 52.7 73.8 84.0 79.9 52.4 75.5 68.7 81.5 83.4 76.5 76.5 41.7 68.7 53.7 75.3 66.5 69.5 0.4

MMA [2] ViTDet 47.8 65.5 61.0 40.5 47.6 64.8 77.9 70.2 43.3 70.2 61.5 78.0 76.9 70.3 76.5 55.3 71.4 77.0 78.7 69.8 65.2 -
ABR [6] ViTDet 50.1 70.4 62.2 42.8 51.3 66.2 78.4 80.1 51.9 74.2 62.3 78.8 79.8 69.1 77.9 52.7 70.6 76.8 77.5 69.1 67.7 21.0

LEA(Ours) ViTDet 80.3 77.3 71.2 62.2 58.9 73.4 80.4 82.0 59.6 78.0 66.4 81.1 81.2 80.7 79.1 56.0 75.3 78.1 79.0 70.1 73.5 0.2

10 + 10 Setting Baseline aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv AP50 Mem.

Old(1-10) ViTDet 86.5 83.2 81.4 65.8 65.0 90.2 89.1 91.3 67.5 84.1 - - - - - - - - - - 40.2 -

Fine-tuning ViTDet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.8 84.3 85.9 78.1 77.2 51.6 72.4 71.0 87.7 76.3 37.8 -
Li [5] RetinaNet 71.7 81.7 66.9 49.6 58.0 65.9 84.7 76.8 50.1 69.4 67.0 72.8 77.3 73.8 74.9 39.9 68.5 61.5 75.5 72.4 67.9 -

Zhang [10] Faster R-CNN 68.6 71.2 73.1 48.1 56.0 64.4 81.9 77.8 49.4 67.8 61.5 67.7 67.5 52.2 74.0 37.8 63.0 55.5 65.3 72.4 63.8 -
Yang [8] Faster R-CNN 73.3 67.5 68.4 52.1 52.6 75.2 81.4 77.3 41.7 73.8 57.6 79.4 76.7 74.7 72.2 31.7 68.0 61.3 73.0 65.4 66.2 -

OWOD [3] Faster R-CNN 63.5 70.9 58.9 42.9 34.1 76.2 80.7 76.3 34.1 66.1 56.1 70.4 80.2 72.3 81.8 42.7 71.6 68.1 77.0 67.7 64.6 38
Joseph [4] Faster R-CNN 76.0 74.6 67.5 55.9 57.6 75.1 85.4 77.0 43.7 70.8 60.1 66.4 76.0 72.6 74.6 39.7 64.0 60.2 68.5 60.5 66.3 7.9
OSR [9] Faster R-CNN 74.8 70.0 71.5 57.4 61.3 76.5 84.2 74.8 45.0 71.7 64.0 79.6 83.0 76.4 76.4 42.5 71.7 68.8 74.1 71.5 69.8 0.3

MMA [2] ViTDet 52.5 66.6 61.5 52.5 50.3 66.8 66.4 62.7 40.6 69.8 60.4 83.8 78.1 77.6 77.8 60.3 70.5 72.4 80.6 70.8 66.0 -
ABR [6] ViTDet 57.0 72.3 67.3 53.8 53.1 72.2 77.2 81.7 52.1 77.9 58.0 83.6 84.2 81.2 80.7 64.1 72.4 73.8 82.6 73.2 70.9 18.9

LEA(Ours) ViTDet 80.8 77.2 71.8 64.1 58.8 77.1 81.1 83.0 59.0 79.8 62.8 83.7 80.4 73.2 78.1 54.1 71.0 60.5 79.3 68.9 72.2 0.9

Table S2. Supplementary to Table 3 (main paper). Detailed experimental results in the two-task settings of VOC 2007. Except for Old(·),
MMA, ABR, and our LEA, other experimental results are borrowed from OSR.

COCO 2017
70+10 40+40 40+4×10 40+2×10

71.9/80.5/89.3 74.0/83.4/93.4 55.7/59.1/69.5 67.6/76.8/88.8

VOC 2007
15+5 10+10 5+3×5 10+2×5

76.9/78.8/93.2 72.8/74.9/89.9 65.6/69.1/76.8 73.2/72.5/82.1

Table S3. F1 score (small/medium/large) for objects of different sizes.

Threshold P R F1 AP AP50 AP75

γ = 1 81.5 93.5 87.1 40.6 58.9 44.2
γ = 0.5 78.3 95.2 85.9 40.9 59.4 44.5
γ = 0.1 75.0 96.5 84.4 41.2 59.8 44.8
γ = 0.05 74.3 96.8 84.1 41.2 59.8 44.8
γ = 0.01 73.9 96.9 83.9 41.2 59.8 44.8

Oracle 100.0 100.0 100.0 42.8 62.2 46.6

Table S4. Supplementary to Section 4.1 (main paper). Ablation
study of hyper-parameter γ in the 40+ 40 setting of COCO 2017.

Method AP AP50 AP75 APS APM APL

Parallel EAM 47.3 70.5 52.0 15.6 35.1 56.8
Series EAM 48.8 72.2 53.7 15.9 35.7 58.4

Table S5. Comparison results of parallel and series EAM in the
10 + 10 setting of VOC 2007.

3.4. Inference time155

In Table S6, we analyze the inference time of our approach.156
It is observed that our method is computationally efficient,157
improving performance by at least 8% over ABR with a158
latency of only 0.4 ms. This latency comes from the intro-159
duction of an additional ETM for inferring task IDs.160
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Figure S3. Structure of parallel EAMs.

Method APS APM APL time (ms)

MMA 19.0 39.8 43.9 149.0
ABR 19.6 40.7 46.2 149.0
LEA (Ours) 28.5 48.8 59.2 149.4

Table S6. Inference time comparison in the 70+10 setting of
COCO 2017.
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4. More visualization results161

4.1. Visualization of detection results162

The inference results in the 10 + 10 setting of VOC 2007163
are shown in Figure S4. The first column displays the test164
images, followed by the ground-truth annotations in the sec-165
ond column, the detection results of the ABR method in the166
third column, and our method’s results in the fourth col-167
umn. Our model notably preserves the detection precision168
for old categories like boat (first row), bus (second row),169
chair (third and sixth rows), and car (fifth row), as evident170
from the figure. Conversely, the prevalent ABR method171
misses the detection of several objects in the above four cat-172
egories. Moreover, ABR also yields false detections for new173
categories, such as diningtable (second row), person (fourth174
row), and tvmonitor (seventh row). These findings under-175
score the superiority of our LEA method in mitigating the176
forgetting of old classes and adapting to new ones in IOD.177

4.2. More heatmap visualizations178

In addition to Figure 3 of the main paper, we provide fur-179
ther visualizations of heatmaps in the COCO 40 + 40 set-180
ting in Figure S5. Specifically, for ND = 6, Figure S5181
demonstrates similar results to those observed in the main182
paper: 1) The heatmaps generated from block 3 in model183
θ1 reveal task-agnostic features that comprehensively en-184
compass all objects depicted in the image; 2) The heatmaps185
derived from block 12 in model θ1 primarily focuses on186
and highlights the classes trained in task 1, encompassing187
cow, cat, car, bus, bird, and traffic light; 3) After addition-188
ally adding and training EAM, the heatmaps of block 12 in189
model {θ1, E2} shifts its attention to the classes relevant to190
the task 2, including tv, laptop, chair, and clock. In essence,191
our method can effectively achieve endogenous attention to192
focus on task-specific objects.193

5. PyTorch implementation of our code194

To run our project, please follow the Build Project, Dataset195
Preparation, and Run Experiments instructions.196

Build Project

• conda create -n lea python=3.9
• conda activate lea
• conda install pytorch==1.12.1
torchvision==0.13.1
torchaudio==0.12.1
cudatoolkit=11.6 -c pytorch -c
conda-forge

• python -m pip install -e
LEA project

197

Dataset Preparation

# Download COCO 2017 and split the data.
• python datasets/coco deal.py
# Download VOC 2007, convert to COCO format,
and split the data.
• python datasets/voc deal.py

198

Run Experiments

# LEA model training & test, settings can be
changed in ‘run coco.sh’ or ‘run voc.sh’.
• python run coco.sh
• python run voc.sh

199
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(a) Test images (b) Ground-truth (c) ABR (d) LEA(Ours)

Figure S4. Supplementary to Section 4.3 (main paper). Visualization results in the 10 + 10 setting of VOC 2007. The old categories
involved in these figures include boat, bus, bottle, car, and chair. The new categories include diningtable, person, sofa, and tvmonitor.
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(a) Test images (b) Block 3 heatmap, model 𝜃𝜃1 (c) Block 12 heatmap, model 𝜃𝜃1 (d) Block 12 heatmap, model {𝜃𝜃1,ℰ2}

Figure S5. Supplementary to Figure 3 (main paper). Visualization of heatmaps in the 40 + 40 setting of COCO 2017. The red-boxed
classes, encompassing cow, cat, car, bus, bird, and traffic light are learned in task 1. The orange-boxed classes, including tv, laptop, chair,
and clock, are learned in task 2.
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