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Overview
In this supplementary material, we provide additional de-
tails and experimental results for the main paper, including:
• Further details of MagicArticulate (Section 1) and

Articulation-XL (Section 3);
• Additional experimental results on skeleton generation

and skinning weight prediction (Section 2);
• A discussion of the limitations of our work and future

works (Section 4).

1. More details of MagicArticulate
1.1. Implementation details

Skeleton generation. Our skeleton generation pipeline
utilizes a pre-trained shape encoder [21] to process input
meshes. For each mesh, we sample 8,192 points which
are encoded into 257 shape tokens following MeshAnything
[5]. To ensure consistent point cloud sampling across differ-
ent data sources, we first extract the signed distance func-
tion from input mesh using [17], followed by generating
a coarse mesh via Marching Cubes [10]. We then sam-
ple point clouds and their corresponding normals from this
coarse mesh.

For training on Articulation-XL, we use 8 NVIDIA
A100 GPUs for approximately two days with a batch size
of 64 per GPU, resulting in an effective batch size of 512.
When training on ModelsResource, we utilize 4 NVIDIA
A100 GPUs for about 9 hours with a batch size of 32 per
GPU, which yields an effective batch size of 128. Dur-
ing inference, the model generates skeleton tokens auto-
regressively from shape tokens until reaching the <eos>
token, followed by detokenization to recover the final skele-
ton coordinates in [−0.5, 0.5] range.

Skinning weight prediction. Our functional diffu-
sion model employs the Denoising Diffusion Probabilis-
tic Model (DDPM) with 1,000 timesteps and a linear beta
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schedule. During training, we condition the model on
ground truth skeletons and supervise it with corresponding
ground truth skinning weights. We add noise to the skinning
weight function (the process is illustrated in Figure S2) and
then feed the noised skinning weights into our denoising
network (Figure S1). Following [19], our network architec-
ture processes the noised set {(x, ft(x)) | x ∈ P} by split-
ting it into smaller subsets and handling them through mul-
tiple cross-attention stages. The time embedding at timestep
t is incorporated into each self-attention layer via adaptive
layer normalization. For visual clarity, Figure S1 shows
only one processing stage.

We train the model on Articulation-XL using 8 NVIDIA
A100 GPUs for approximately one day, with a batch size of
16 per GPU (effective batch size 128). Training on Mod-
elsResource uses the same configuration for about 4 hours.
During inference, we perform 25 denoising steps to gen-
erate predictions W ∈ Rv×n in the range [−1, 1]. These
results are then normalized to [0, 1], ensuring that each row
of the skinning weight matrix sums to 1. To handle vary-
ing joint counts across different models, we employ a valid
joint mask during both training and testing, with a maxi-
mum joint count of 55 as discussed in the main paper (Sec-
tions 4.2 and 5.3).

1.2. Experimental details

For baseline comparisons, we use the implementations of
RigNet [18] and Pinocchio [2] from the GitHub reposito-
ries1. The Geodesic Voxel Binding (GVB) [6] compar-
ison is conducted using the implementation in Autodesk
Maya [8]. When training RigNet on our Articulation-XL,
we strictly follow the authors’ data processing pipeline and
six-stage training strategy as specified in their official im-
plementation.

1https://github.com/zhan- xu/RigNet, https://
github.com/haoz19/Automatic-Rigging
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Figure S1. Overview of the function diffusion architecture for skinning weight prediction. Given a set of noised skinning weight
functions {(x, ft(x)) | x ∈ P}, conditioned on skeleton and shape features from [21], we denoise the skinning weight functions to
approximate the target weights.

Figure S2. Process of adding noise to the skinning weight func-
tion. Given x ∈ P and the original skinning weight function
f0(x), we add the noise function g(x) to obtain the noised func-
tion ft(x).

1.3. Animation

Many recent works have explored 3D animation, includ-
ing skeleton-free pose transfer [9, 12–14], skeleton-driven
pose transfer [20], and physics-driven animation [7]. In
this paper, we propose a method that enables automatic
articulation generation for any input 3D model, whether
artist-created or AI-generated. The pipeline first generates a
skeleton for the input model, then predicts skinning weights

conditioned on both the model geometry and the generated
skeleton. The resulting articulated model can be exported in
standard formats (e.g., FBX, GLB), making it directly com-
patible with popular animation software such as Blender [3]
and Autodesk Maya [8].

2. Additional experimental results

2.1. More results of skeleton generation
We provide additional qualitative comparisons among
MagicArticulate, RigNet [18], and Pinocchio [2] for skele-
ton generation.

More qualitative results on out-of-domain data. We
evaluate our method’s generalization capability on diverse
out-of-domain data sources: AI-generated meshes from
Tripo2.0 [1], unregistered 3D scans from FAUST [4], and
video-based 3D reconstructions [16]. As shown in Fig-
ure S3, while existing methods struggle with generaliza-
tion (RigNet fails across all cases, and Pinocchio shows
misalignments even for human bodies, see skeleton results
on the 3D scan), our method maintains robust performance
across different data sources and categories. Notably, for
human models, our method generates more detailed skele-
tal structures, including accurate hand skeletons, surpassing
Pinocchio’s template-based results.

More qualitative results on Articulation-XL and Mod-
elsResource. We provide additional qualitative results on
both Articulation-XL and ModelsResource datasets. As il-
lustrated in Figure S4, our method consistently generates
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Figure S3. Comparison of skeleton generation methods on out-of-domain data. The input meshes are from 3D generation, 3D scan,
and 3D reconstruction.
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Figure S4. Comparison of skeleton generation methods on ModelsResource (left) and Articulation-XL (right). Our results more
closely resemble the artist-created references, while RigNet and Pinocchio struggle to handle various object categories.

Table S1. Quantitative comparison on skinning weight prediction. We compare our method with GVB and RigNet. For Precision and
Recall, larger values indicate better performance. For average L1-norm error and average distance error, smaller values are preferred.

Dataset Precision Recall avg L1 avg Dist.

GVB
ModelsResource

69.3% 79.2% 0.687 0.0067
RigNet 77.1% 83.5% 0.464 0.0054
Ours 82.1% 81.6% 0.398 0.0039

GVB
Articulation-XL

75.7% 68.3% 0.724 0.0095
RigNet 72.4% 71.1% 0.698 0.0091
Ours 80.7% 77.2% 0.337 0.0050

high-quality skeletons that accurately match artist-created
references across diverse object categories.

Robustness to various mesh orientations. To further val-
idate our model’s robustness to various orientations, we in-
clude mesh rotations at multiple angles in Figure S5. These
examples show that our approach remains largely rotation-
stable. While minor skeleton variations may occur, all gen-
erated results maintain anatomically valid and suitable for
rigging purposes.

2.2. More results of skinning weight prediction

Quantitative results with deformation error. Beyond the
precision, recall, and L1-norm metrics reported in the main
paper, we evaluate the practical effectiveness of predicted
skinning weights through deformation error analysis. This
metric computes the average Euclidean distance between
vertices deformed using predicted weights and ground truth
weights across 10 random poses. The comprehensive re-
sults, shown in Table S1, demonstrate our method’s supe-
rior performance across most metrics on both datasets. We
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Figure S5. Skeleton results on 3D models with different orien-
tations. Although minor differences may appear in the generated
skeletons, all results remain anatomically valid and suitable for
rigging purposes.

also include deformation error analysis in our ablation stud-
ies (Table S2), further validating the effectiveness of our
design choices.

More qualitative results. We present additional qualita-
tive comparisons between MagicArticulate, RigNet [18],
and Geodesic Voxel Binding (GVB) [6] for skinning weight
prediction. Figure S6 shows both the predicted skinning



Table S2. Ablation studies on ModelsResource for skinning weight prediction.

Precision Recall avg L1 avg Dist.

w/o geodesic dist. 81.5% 77.7% 0.444 0.0046
w/o weights norm 82.0% 77.9% 0.436 0.0045
w/o shape features 81.4% 81.3% 0.412 0.0042

Ours 82.1% 81.6% 0.398 0.0039

Table S3. Object counts for each category in the Articulation-XL dataset.

Category # Objects Category # Objects Category # Objects

character 16020 miscellaneous 584 architecture 132
anthropomorphic 13393 scanned data 546 planet 49

animal 4760 plant 382 paper 46
mythical creature 4734 accessories 293 musical instrument 25

toy 1360 vehicle 283 sporting goods 21
weapon 1257 sculpture 276 armor 13
anatomy 1227 household items 274 robot 4
clothing 595 food 206

weights and their L1 error maps compared to artist-created
references, demonstrating our method’s superior accuracy
across diverse object categories.

3. More details of Articulation-XL
3.1. Data Curation
Our dataset curation process filters out duplicates, objects
with extreme joint/bone counts, and multi-component ob-
jects. A detailed category-wise object distribution is pro-
vided in Table S3.

3.2. Quality assessment
We employ GPT-4o [11] for quality assessment of skeleton
annotations. For each model, we generate four-view renders
using Pyrender2 showing both the 3D model and its skele-
ton (Figure S9). These renders are evaluated using specific
quality criteria detailed in Figure S7.

3.3. Category annotation
For the Visual-Language Model (VLM)-based category la-
beling, we render each 3D model along with its normal
maps from four viewpoints using Blender [3] (see example
in Figure S10). We then utilize GPT-4o [11] to classify the
categories of the 3D models based on specific instructions,
as outlined in Figure S8.

4. Limitations and future work
Despite its strong performance, our method has several no-
table limitations. First, our approach struggles with coarse

2https://github.com/mmatl/pyrender

mesh inputs, often producing inaccurate skeletons as shown
in Figure S11. While we employ preprocessing techniques
to handle inputs from different sources, the significant do-
main gap between training data and coarse meshes remains
challenging. Potential solutions include incorporating mesh
quality augmentation during training to enhance robustness.

A second limitation lies in our dataset composition. Al-
though Articulation-XL is large in scale, it lacks sufficient
coverage of common articulated objects like laptops, sta-
plers, and scissors, which affects our model’s generalization
to these categories.

Future work will address these limitations by: 1) De-
veloping more robust preprocessing and training strategies
for handling varying mesh qualities; 2) Expanding dataset
coverage to include a broader range of everyday articulated
objects; 3) Exploring techniques to better bridge the domain
gap between different data sources.
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Figure S6. Comparison of skinning weight prediction methods on ModelsResource (first three rows) and Articulation-XL (last
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# Task Description:
Our task is to evaluate the quality of the skeleton within a 3D object using an image that contains four sub-images rendered from 

both the 3D mesh and its skeleton together. The four sub-images are arranged in a 2x2 grid format. These sub-images are rendered 

from four distinct views of the 3D object. In the images, bones are represented by blue cylinders, and joints are represented by red 

spheres.

# Instructions:
1. Carefully examine the provided image, which contains four different sub-images of the 3D object and its skeleton.

2. Provide a detailed critique of the skeleton within the 3D object based on the following criteria:    

      Joint and Bone Position Relative to Mesh:       

             Identify joints or bones that are excessively protruding out of the mesh. A high-quality skeleton should have both joints 

and bones confined within the mesh boundary. The more joints or bones that protrude, the lower the quality. Since the joint spheres 

and bone cylinders have a radius, you should consider their centers without accounting for their shapes.

      Anatomical Accuracy:        

             Correct Joint Placement: Joints should mimic the anatomical placement. For example, shoulder joints should align with the 

mesh’s shoulder region.        

             Natural Poses: The skeleton should maintain natural and plausible poses. Any significant deviations might indicate errors 

in skeletal rigging.

3. Based on your analysis, provide a rating for each criterion using the following three options. Ensure that the decision aligns with 

your detailed critique.

    Poor: Poor quality, significant issues or errors that severely impact the skeleton's usability or appearance.    

    Average: Average quality, some issues or errors that moderately impact the skeleton's usability or appearance.    

    Good: Good quality, no noticeable issues/errors or minor issues/errors that slightly impact the skeleton's usability or appearance.

4. Provide an overall rating for the skeleton within the 3D object based on the ratings for each criterion, with more weight given to 

Joint and Bone Position Relative to Mesh. If the skeleton has good performance on this part, it can be rated as good even if it has 

minor issues in other criteria. Ensure that the final rating is consistent with the individual scores and the overall critique. If the 

provided reasons for each criterion indicate a poor quality, the rating should reflect that. Ensure that the ratings and reasons are 

aligned.

5. Make sure to provide your evaluation following the example output format below.

# Example Output:

```Critique: 

Joint and Bone Position Relative to Mesh:    

- External Joints and Bones: Good. Most joints and bones are well confined within the mesh's boundary, with minimal protrusion 

observed.

Anatomical Accuracy:    

- Correct Joint Placement: Good. Joints are well-aligned with the mesh's primary structural points.    

- Natural Poses: Good. The skeleton maintains a natural and plausible pose, consistent with the object's intended design.

Final Rating: Good.

```

```Critique:

Joint and Bone Position Relative to Mesh:   

- External Joints and Bones: Poor. Several joints and bones, particularly in the lower section, are protruding significantly out of the 

mesh boundary.

Anatomical Accuracy:    

- Correct Joint Placement: Average. While most joints are correctly placed, some joints are noticeably out of alignment.    

- Natural Poses: Poor. The skeleton maintains an unnatural pose, with significant deviations observed.

Final Rating: Poor.

```

```Critique:

Joint and Bone Position Relative to Mesh:    

- External Joints and Bones: Average. Most joints and bones are positioned correctly within the mesh, but some joints, especially 

in the middle section, slightly protrude, affecting the alignment.

Anatomical Accuracy:    

- Correct Joint Placement: Average. Joints are generally placed close to the intended structural points, but there are minor 

misalignments that mildly impact the skeleton's accuracy.    

- Natural Poses: Average. The skeleton maintains a generally natural pose, but some joints appear slightly off, giving a somewhat 

unnatural appearance.

Final Rating: Average.

```

Figure S7. Input instructions to VLM for data filtering.



# Task Description:
Our task is to evaluate the categories of a 3D object based on an image that contains eight sub-images rendered from this 3D object. 

The eight sub-images are concatenated in a 2x4 format. The top four images are its RGB images rendered from four different 

angles, and the bottom four are its normal maps rendered from four different angles.

# Instructions:
1. Carefully examine the provided image, which contains eight different sub-images of the 3D object. 

2. Classify the 3D object into one or more of the following categories:

    Character: Human or humanoid objects.

    Animal: Any kind of animal, including pets, wild animals, and mythical creatures.

    Furniture: Items like chairs, tables, beds, etc.

    Electronic Device: Specifically defined as 3C devices, such as phones, Apple Watch, TVs, and other consumer electronics.

    Mythical Creature: Strange creatures, monsters, elves, etc., including dragons and other legendary creatures.

    Anatomy: Parts of the human body or used for medical purposes.

    Tool: Instruments used to perform tasks, like hammers, screwdrivers, etc.

    Planet: Celestial bodies such as planets, moons, and other astronomical objects.

    Musical Instrument: Objects designed to produce music, such as guitars, pianos, drums, etc.

    Sculpture: Artistic objects created by carving, modeling, or assembling materials, often for decorative or artistic purposes.

    Jewelry: Decorative items worn for personal adornment, such as rings, necklaces, bracelets, etc.

    Accessory: Includes fashion accessories (can overlap with jewelry) and parts or recognizable parts of a larger object.

    Paper: Appears to be a flat texture with no thickness.

    Anthropomorphic: Objects with human-like features, even if they are essentially other types of items. For example, Donald 

Duck, although essentially a duck, can be marked as anthropomorphic due to its human-like features. Anything with hands and feet 

counts as anthropomorphic. A bell pepper with a smiley face but no hands or feet. A soda can with human-like features.

    Toy: Items designed for play, like dolls, action figures, etc.

    Clothing: Wearable items like shirts, pants, shoes, etc.

    Food: Edible items like fruits, vegetables, cooked dishes, etc.

    Scanned Data: Objects created from 3D scans. If the object appears to be a scanned model, classify it as scanned data and rate 

it accordingly.

    Architecture: Buildings and other structures.

    Vehicle: Cars, bikes, planes, boats, etc.

    Plant: Trees, flowers, shrubs, etc.

    Weapon: Items designed for combat, like swords, guns, archery, etc.

    Household Item: Common items used in daily life, like utensils, appliances, etc.

    Sporting Goods: Items used in sports and recreational activities, like balls, bats, etc.

    Miscellaneous: Objects that do not fit into any of the current categories but have a clear meaning.

3. Make sure to provide your evaluation following the example output format below. 

# Example Output:

```

Categories: furniture.

```

```

Categories: weapon.

```

```

Categories: scanned data, architecture.

```

```

Categories: Character.

```

Figure S8. Input instructions to VLM for category labeling.



Figure S9. Input rendered examples to VLM for data filtering.

Figure S10. Input rendered examples to VLM for category la-
beling.
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