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7. Baselines
The Gold Stadnard (Gold Std) model is retrained entirely
only on the retain set (Dr), achieving ideal unlearning
–when access to the full training set is guaranteed– but
at the cost of increased computational complexity. Fine-
tuning: The pre-trained model is further trained only on
the retain samples (Dr). NegGrad+ [23]: The pre-trained
model continues training on the full training set, but the
gradient sign is reversed during backpropagation for the
forget samples. Random Labeling (RndLbl) [17]: The
pre-trained model continues training on the full training set,
but the forget samples are randomly reassigned to incorrect
classes. Bad Teacher (BadT) [9]: A knowledge distillation
framework where the student model follows the pre-trained
model for retain samples and a randomly initialized model
for forget samples. SCRUB [23]: A knowledge distillation
framework where student model selectively aligns with
the pre-trained model by minimizing the KL divergence
of their outputs on retain samples while maximizing it for
forget samples. SSD [14]: Weights that are disproportion-
ately important for forget samples are identified using the
Fisher Information Matrix and subsequently dampened.
UNSIR [34]: A noise matrix, generated based on the forget
samples, is fed to the pre-trained model to maximize its
error on these samples. SalUn [12]: A gradient-based
approach that identifies weights to be unlearned and those
to keep unchanged, followed by a downstream unlearning
method such as Random Labeling. Finetuning, NegGrad+
and Random Labeling are considered simple yet widely
used unlearning baselines, whereas the latter five are
state-of-the-art approaches.

LoTUS can be integrated with SalUn, with SalUn used
to obtain the weight saliency mask for pruning, and LoTUS
applied for unlearning. This integration can enhance
the unlearning effectiveness of LoTUS. For instance, on
ResNet18 with TinyImageNet, it reduces the Avg Gap of
LoTUS to 0.1250 (a 25.37% decrease) and the JSD to 0.55
(an 11.29% decrease). However, this comes at the cost of
efficiency, with unlearning time increasing to 4.62 minutes
(a 162% increase).

8. Reproducibility and Transparency
The code to reproduce the results presented in this paper is
publicly available at https://github.com/cspartalis/LoTUS.
In addition, all tables and figures have been documented in
Jupyter notebooks to enhance transparency. We conducted
the experiments using Python 3.11 and CUDA 12.1. For
ImageNet1k experiments, we used an NVIDIA RTX A6000

Baseline Learning Rate Weight Decay Optimizer
Finetune 1× 10−3 5× 10−4 SGD
Negrad+ 1× 10−3 5× 10−4 SGD
RndLbl 1× 10−3 5× 10−4 SGD
BadT 1× 10−4 0 Adam
SCRUB 5× 10−4 5× 10−4 Adam
SSD 0.1 0 SGD
UNSIR 1× 10−3 0 SGD
SalUn 0.1 5× 10−4 SGD

Table 5. Hyperparameters used for baselines. For state-of-the-art
methods, they are taken from their respective papers.

48GB GPU. The remaining experiments were performed on
an NVIDIA RTX 4080 16GB GPU. We also used an Intel
i7-12700K CPU and 32GB RAM. The hyperparameters
used for the baselines are listed in Tab. 5

9. Extended Analysis on the Accuracy Metrics
Table 6 presents the accuracy scores that define the Avg
Gap metric. Beyond outperforming state-of-the-art meth-
ods in terms of Avg Gap, LoTUS achieves the best scores
in individual accuracy metrics, including MIA accuracy,
and accuracy on the retain and test sets. Specifically, it
consistently ranks either first or second in these metrics,
with first place being the most frequent.

Regarding retention performance (i.e., preserving the
utility of the pre-trained model), LoTUS clearly outper-
forms state-of-the-art, as evidenced by its superior accuracy
on the retain and test sets.

However, evaluating unlearning effectiveness, requires
a more nuanced analysis. Although LoTUS consistently
ranks among the top two methods in MIA accuracy, its
accuracy on the forget set exceeds that of the gold standard
model (i.e., the model retrained solely on the retain set).
This apparent discrepancy may lead to misleading eval-
uation, suggesting that LoTUS exhibits poor unlearning
performance.

However, by incorporating the more sensitive JSD
metric –a measure that captures distributional-level differ-
ences and provides a more robust evaluation, as detailed
in Sec. 5– we conclude that LoTUS achieves effective
unlearning. Given this, the increased accuracy on the forget
set does not indicate poor unlearning, but rather suggests
that LoTUS preserves the utility of the pre-trained model
even for the forget samples. The fact that LoTUS achieves
the best Avg Gap scores despite the disproportionate
penalty imposed by the gap between the accuracy of the
unlearned and gold standard models on forget samples



Metric (↓) Gold Std Finetuning NegGrad+ [23] RndLbl [17] Bad Teacher [9] SCRUB [23] SSD [14] UNSIR [34] SalUn [12] LoTUS
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et MIA Acc. 0.76±0.00 0.78±0.00(0.02) 0.83±0.00(0.07) 0.50±0.43(0.26) 0.67±0.00(0.09) 0.79±0.00(0.03) 0.79±0.00(0.03) 0.80±0.00(0.04) 0.67±0.25(0.09) 0.76±0.00(0.00)
Forget Acc. 0.90±0.00 0.93±0.00(0.03) 0.97±0.00(0.07) 0.61±0.52(0.29) 0.84±0.01(0.06) 0.96±0.00(0.06) 0.96±0.00(0.06) 0.92±0.00(0.02) 0.82±0.30(0.08) 0.96±0.00(0.06)
Retain Acc. 0.96±0.00 0.98±0.00(0.02) 0.98±0.00(0.02) 0.64±0.55(0.32) 0.87±0.01(0.09) 0.96±0.00(0.00) 0.96±0.00(0.00) 0.94±0.00(0.02) 0.86±0.32(0.10) 0.96±0.00(0.00)
Test Acc. 0.90±0.00 0.90±0.00(0.00) 0.90±0.00(0.00) 0.60±0.51(0.30) 0.83±0.01(0.07) 0.90±0.00(0.00) 0.90±0.00(0.00) 0.89±0.00(0.01) 0.80±0.30(0.10) 0.90±0.00(0.00)
Avg Gap 0.0000 0.0175 0.0400 0.2925 0.0775 0.0225 0.0225 0.0225 0.0925 0.0150
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MIA Acc. 0.72±0.00 0.77±0.00(0.05) 0.79±0.02(0.07) 0.74±0.01(0.02) 0.66±0.01(0.06) 0.75±0.00(0.03) 0.75±0.01(0.03) 0.78±0.01(0.06) 0.75±0.01(0.03) 0.71±0.02(0.01)
Forget Acc. 0.92±0.00 0.95±0.01(0.03) 0.97±0.02(0.05) 0.94±0.00(0.02) 0.90±0.01(0.02) 0.97±0.00(0.05) 0.96±0.01(0.04) 0.94±0.00(0.02) 0.94±0.01(0.02) 0.96±0.01(0.04)
Retain Acc. 0.96±0.00 0.98±0.00(0.02) 0.97±0.02(0.01) 0.98±0.00(0.02) 0.91±0.00(0.05) 0.96±0.00(0.00) 0.96±0.00(0.00) 0.95±0.01(0.01) 0.98±0.01(0.02) 0.96±0.00(0.00)
Test Acc. 0.91±0.01 0.92±0.01(0.01) 0.91±0.01(0.00) 0.92±0.00(0.01) 0.89±0.01(0.02) 0.91±0.01(0.00) 0.91±0.00(0.00) 0.90±0.01(0.01) 0.92±0.00(0.01) 0.91±0.00(0.00)
Avg Gap 0.0000 0.0275 0.0325 0.0175 0.0375 0.0200 0.0175 0.0250 0.0200 0.0125
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0 MIA Acc. 0.88±0.00 0.90±0.00(0.02) 0.91±0.00(0.03) 0.84±0.02(0.04) 0.81±0.02(0.07) 0.88±0.00(0.00) 0.89±0.01(0.01) 0.90±0.00(0.02) 0.84±0.02(0.04) 0.87±0.00(0.01)

Forget Acc. 0.99±0.00 0.99±0.00(0.00) 1.00±0.00(0.01) 0.99±0.00(0.00) 0.96±0.01(0.03) 1.00±0.00(0.01) 1.00±0.01(0.01) 0.99±0.00(0.00) 0.99±0.00(0.00) 1.00±0.00(0.01)
Retain Acc. 1.00±0.00 1.00±0.00(0.00) 1.00±0.00(0.00) 1.00±0.00(0.00) 0.97±0.01(0.03) 1.00±0.00(0.00) 1.00±0.01(0.00) 0.99±0.00(0.01) 1.00±0.00(0.00) 1.00±0.00(0.00)
Test Acc. 0.98±0.01 0.99±0.01(0.01) 0.99±0.01(0.01) 0.99±0.00(0.01) 0.96±0.01(0.02) 0.99±0.01(0.01) 0.99±0.01(0.01) 0.99±0.00(0.01) 0.99±0.01(0.01) 0.98±0.01(0.00)
Avg Gap 0.0000 0.0075 0.0125 0.0125 0.0375 0.0050 0.0075 0.0100 0.0125 0.0050
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MIA Acc. 0.57±0.00 0.52±0.08(0.05) 0.52±0.07(0.05) 0.52±0.10(0.05) 0.35±0.05(0.22) 0.59±0.01(0.02) 0.59±0.01(0.02) 0.47±0.08(0.10) 0.53±0.12(0.04) 0.59±0.01(0.02)
Forget Acc. 0.57±0.01 0.61±0.01(0.04) 0.66±0.02(0.09) 0.58±0.01(0.01) 0.43±0.06(0.14) 0.62±0.01(0.05) 0.59±0.04(0.02) 0.58±0.01(0.01) 0.58±0.01(0.01) 0.63±0.00(0.06)
Retain Acc. 0.66±0.01 0.72±0.01(0.06) 0.71±0.01(0.05) 0.67±0.02(0.01) 0.47±0.07(0.19) 0.66±0.01(0.00) 0.63±0.04(0.03) 0.72±0.01(0.06) 0.68±0.01(0.02) 0.66±0.01(0.00)
Test Acc. 0.65±0.01 0.66±0.01(0.01) 0.65±0.03(0.00) 0.64±0.01(0.01) 0.50±0.08(0.15) 0.66±0.01(0.01) 0.64±0.01(0.01) 0.63±0.02(0.02) 0.64±0.02(0.01) 0.65±0.01(0.00)
Avg Gap 0.0000 0.0400 0.0475 0.0200 0.1750 0.0200 0.0200 0.0475 0.0200 0.0200
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et MIA Acc. 0.30±0.01 0.00±0.00(0.30) 0.00±0.00(0.30) 0.00±0.00(0.30) 0.67±0.52(0.37) 0.96±0.01(0.66) 0.95±0.01(0.65) 0.67±0.58(0.37) 0.00±0.00(0.30) 0.53±0.01(0.23)
Forget Acc. 0.58±0.00 0.70±0.02(0.12) 0.73±0.02(0.15) 0.56±0.02(0.02) 0.49±0.04(0.09) 1.00±0.00(0.42) 1.00±0.00(0.42) 0.68±0.03(0.10) 0.62±0.01(0.04) 0.91±0.01(0.33)
Retain Acc. 1.00±0.00 0.73±0.02(0.27) 0.73±0.02(0.27) 0.73±0.02(0.27) 0.55±0.04(0.45) 1.00±0.00(0.00) 1.00±0.00(0.00) 0.71±0.02(0.29) 0.71±0.02(0.29) 0.93±0.01(0.07)
Test Acc. 0.89±0.01 0.40±0.01(0.19) 0.41±0.01(0.18) 0.41±0.02(0.18) 0.36±0.03(0.23) 0.60±0.01(0.01) 0.60±0.00(0.01) 0.40±0.02(0.19) 0.41±0.01(0.18) 0.55±0.00(0.04)
Avg Gap 0.0000 0.2200 0.2250 0.1925 0.2850 0.2725 0.2700 0.2375 0.2025 0.1675
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MIA Acc. 0.49±0.01 0.00±0.00(0.49) 0.00±0.00(0.49) 0.00±0.00(0.49) 0.33±0.58(0.16) 0.78±0.05(0.29) 0.59±0.05(0.10) 0.00±0.00(0.49) 0.00±0.00(0.49) 0.28±0.22(0.21)
Forget Acc. 0.57±0.02 0.40±0.06(0.17) 0.41±0.06(0.16) 0.31±0.06(0.26) 0.27±0.03(0.30) 0.93±0.03(0.36) 0.50±0.32(0.07) 0.40±0.07(0.17) 0.38±0.04(0.19) 0.81±0.08(0.24)
Retain Acc. 0.94±0.03 0.41±0.06(0.53) 0.41±0.06(0.53) 0.37±0.07(0.57) 0.28±0.03(0.66) 0.93±0.03(0.01) 0.50±0.32(0.44) 0.41±0.07(0.53) 0.41±0.04(0.53) 0.92±0.02(0.02)
Test Acc. 0.60±0.02 0.35±0.05(0.25) 0.35±0.05(0.25) 0.31±0.06(0.29) 0.25±0.03(0.35) 0.60±0.02(0.00) 0.36±0.20(0.24) 0.34±0.04(0.26) 0.35±0.03(0.25) 0.61±0.01(0.01)
Avg Gap 0.0000 0.3600 0.3575 0.4025 0.3675 0.1650 0.2125 0.3625 0.3650 0.1200
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MIA Acc. 0.76±0.03 0.30±0.26(0.46) 0.48±0.50(0.28) 0.48±0.50(0.28) 0.43±0.37(0.33) 0.94±0.01(0.18) 0.81±0.11(0.05) 0.46±0.03(0.30) 0.16±0.28(0.60) 0.82±0.10(0.06)
Forget Acc. 0.91±0.02 0.97±0.01(0.06) 0.97±0.01(0.06) 0.96±0.01(0.05) 0.71±0.18(0.20) 1.00±0.00(0.09) 0.86±0.16(0.05) 0.93±0.01(0.02) 0.94±0.02(0.02) 0.99±0.00(0.08)
Retain Acc. 0.99±0.02 0.98±0.01(0.01) 0.97±0.01(0.02) 0.97±0.01(0.02) 0.71±0.18(0.28) 1.00±0.00(0.01) 0.87±0.16(0.12) 0.93±0.01(0.06) 0.95±0.02(0.04) 0.99±0.00(0.00)
Test Acc. 0.91±0.02 0.89±0.02(0.02) 0.88±0.02(0.03) 0.89±0.02(0.02) 0.66±0.16(0.25) 0.93±0.01(0.02) 0.80±0.15(0.11) 0.86±0.01(0.05) 0.86±0.03(0.05) 0.91±0.01(0.00)
Avg Gap 0.0000 0.1375 0.0975 0.0925 0.2650 0.0750 0.0825 0.1075 0.1800 0.0350
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MIA Acc. 0.48±0.04 0.54±0.09(0.06) 0.53±0.08(0.05) 0.33±0.31(0.15) 0.34±0.01(0.14) 0.70±0.05(0.22) 0.70±0.06(0.22) 0.40±0.35(0.08) 0.53±0.08(0.05) 0.53±0.04(0.05)
Forget Acc. 0.47±0.04 0.64±0.04(0.17) 0.68±0.04(0.21) 0.66±0.04(0.19) 0.53±0.07(0.06) 0.88±0.06(0.41) 0.87±0.06(0.40) 0.71±0.03(0.24) 0.63±0.05(0.16) 0.86±0.04(0.39)
Retain Acc. 0.89±0.04 0.64±0.04(0.25) 0.66±0.03(0.23) 0.80±0.03(0.09) 0.76±0.04(0.13) 0.89±0.04(0.00) 0.89±0.05(0.00) 0.73±0.03(0.16) 0.67±0.04(0.22) 0.85±0.08(0.04)
Test Acc. 0.56±0.02 0.43±0.01(0.13) 0.43±0.01(0.13) 0.47±0.02(0.09) 0.48±0.03(0.08) 0.54±0.03(0.02) 0.54±0.03(0.02) 0.46±0.01(0.10) 0.43±0.02(0.13) 0.54±0.05(0.02)
Avg Gap 0.0000 0.1525 0.1550 0.1300 0.1025 0.1625 0.1600 0.1450 0.1400 0.1250

Table 6. Accuracy Metrics used to compute Average (Avg) Gap. Mean performance and standard deviation (µ±σ) are reported across
three trials with different forget and retain sets. Performance gaps relative to the Gold Standard are noted as (•), with smaller gaps indicating
stronger performance. Avg Gap serves as a key indicator, summarizing performance across MIA, Forget, Retain, and Test Accuracy. Lo-
TUS achieves state-of-the-art results in MIA, retain and test accuracies, ranking as the best in most cases and second-best in the remaining.

further reinforces its capacity to balance forgetting and
retention, as evidenced by Avg Gap.

This also raises concerns about the widely used Avg
Gap metric, as it may lead to misleading evaluation of
unlearning. However, incorporating both Avg Gap and JSD
metrics in the evaluation helps mitigate these concerns.

10. Detailed Comparison of RF-JSD and ZRF

The ZRF metric [9] assesses the unlearning effectiveness
by computing the JSD score twice: once between the
unlearned and a randomly initialized model, and again
between the pre-trained and the same randomly initialized
model. The latter serves as a reference point for the optimal
value.

By contrast, RF-JSD simplifies the evaluation by
requiring only a single JSD computation –between the
unlearned model and the original model– where the optimal
value is fixed at zero. This direct alignment with the
JSD metric (which also has an optimal value fixed at

zero) facilitates a more comprehensive evaluation of the
unlearning effectiveness.

Beyond the obvious efficiency gain from RF-JSD not
requiring inference on an additional randomly initialized
model to obtain a reference score –unlike ZRF– its use of
normalized class-wise mean distributions further enhances
computational efficiency. Specifically, this reduces the
complexity from O(nf ·nu · k) to O

(
(nf +nu) · k

)
, where

nf and nu denote the number of samples in the forget
and test sets, respectively, and k is the number of classes.
This optimization significantly reduces the computational
overhead, particularly for large datasets. In this analysis,
we exclude the complexity of the feed-forward process,
which remains unchanged.

Finally, Table 7 presents a detailed correlation between
RF-JSD and JSD as measured by the Pearson correlation
coefficient (PCC) for all benchmarks. PCC results exhibit
a strong correlation between these two metrics, with
RF-JSD offering the additional advantage of not requiring
a retrained model (i.e., gold standard).



Dataset
(

num. of forget samples
num. of training samples × 100%

)
PCC (↑) p-value (↓)

V
iT

CIFAR-100 (10%) 0.84 0.0043
CIFAR-10 (10%) 0.92 0.0005
MUFAC 0.93 0.0003
CIFAR-100 (50%) 0.94 0.0001
CIFAR-10 (50%) 0.99 0.0000
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CIFAR-100 (10%) 0.97 0.0000
CIFAR-10 (10%) 0.90 0.0011
MUFAC 0.88 0.0018
CIFAR-100 (50%) 0.91 0.0006
CIFAR-10 (50%) 0.89 0.0013

Mean ± Std 0.92±0.04 0.0010±0.0016

Table 7. Retrain Free-JSD (RF-JSD) and JSD Correlation
measured with the Pearson correlation coefficient (PCC). A high
PCC (closer to 1) indicates a strong correlation, while a low
p-value reflects high confidence in the measurement. The table
shows that RF-JSD strongly correlates with the well-established
JSD metric across datasets and architectures, demonstrating its
reliability as unlearning metric that is particularly useful when the
gold standard model is not available (e.g., it is impractical due to
high computational complexity or it is infeasible due to not access
to the original training set) .

11. Detailed Analysis on the Time Complexity
This section provides an in-depth analysis that demon-
strates why LoTUS achieves superior efficiency compared
to state-of-the-art approaches, as observed in Tabs. 1,
3 and 4 and discussed in Sec. 5. We define the time
complexity of model updates in DNNs, generalized across
architectures like ResNet18 and ViT, as follows:

O(E ·nf + nr

B
·Np ·Ni) (13)

where E represents the total number of epochs, nf and
nr are the number of instances in Df (forget set) and Dr

(retain set) used during unlearning, respectively, B is the
batch size, Np is the total number of model parameters,
and Ni is the input dimensionality. While this definition
abstracts away architectural-specific details and optimiza-
tions, it provides a meaningful framework for comparing
methods on shared benchmarks.

The main advantage of LoTUS over Finetuning, Neg-
Grad+, Random Labeling, and SCRUB is that it requires
significantly fewer instances nr from the retain set Dr.
Specifically, LoTUS can use only 30% of the instances in
Dr to preserve the utility of the model. All other factors
(E,nf , B,Np, Ni) are the same for all unlearning baselines
in our benchmarks. As shown in Tab. 1, LoTUS achieves
superior efficiency.

As the number of instances nf in the forget set increases,
the execution time of LoTUS increases, in alignment with
Eq. (13). Thus, in the extreme scenario where 50% of the
forget set is designated for unlearning, we observe that the

Metric (↓) Finetuning NegGrad+ RndLbl LoTUS

V
iT

C
-1

00

Avg. Gap 0.0400 0.0600 0.0250 0.0225
JSD×1e4 0.02±0.00 0.03±0.01 0.01±0.01 0.01±0.00

Time (min) 6.34±0.01 12.68±0.02 12.63±0.02 13.79±0.02

V
iT

C
-1

0 Avg. Gap 0.0125 0.0200 0.0050 0.0050
JSD×1e4 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00

Time (min) 6.48±0.27 12.97±0.50 12.60±0.03 14.09±0.53
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00

Avg. Gap 0.3200 0.3150 0.3875 0.1725
JSD×1e4 1.39±0.10 1.38±0.08 1.03±0.23 0.28±0.00

Time (min) 0.26±0.01 0.52±0.00 0.48±0.00 0.57±0.01

R
N

18
C

-1
0 Avg. Gap 0.1100 0.1475 0.2100 0.0650

JSD×1e4 0.31±0.00 0.31±0.01 0.73±0.22 0.09±0.01
Time (min) 0.26±0.01 0.51±0.02 0.48±0.00 0.57±0.00

Table 8. Scaling up the Forget set to 50% of the training sets:
LoTUS outperforms basic unlearning methods in unlearning ef-
fectiveness, but not in efficiency.

efficiency of Finetuning, NegGrad+, and Random Labeling
may exceed that of LoTUS, as shown in Tab. 3. In Tab. 8
we present the scores of these basic unlearning methods
that are not presented in Tab. 3, and show that they may be
better in terms of efficiency, but LoTUS remains the best in
terms of effectiveness.

Next, we compare the time complexity of the auxiliary
computations between LoTUS and other unlearning base-
lines that use equal or fewer samples from the retain set Dr:

LoTUS: O(nf+nv), where nv is the total number of
instances in the validation set, for computing τd.

Bad Teacher [9]: O
(
(nf+nr)·k

)
, where k is the total

number of classes, for calculating the KL divergences
between the student and the teacher.

UNSIR [34]: O(Enoise ·nf ·Ni), where Enoise are the
epochs for noise optimization, and Ni represents the
total input dimensionality (product of channels, width
and height of the images).

SSD [14]: O(nf ·N2
p ) for computing the Fisher Informa-

tion Matrix.

In this analysis, we exempt the complexity of the feed-
forward process which is the same for all the unlearning
methods in our benchmarks. Also, SalUn [12] introduces
a computational overhead prior to unlearning due to the
computations of the saliency mask for weight pruning.
The complexity of this auxiliary computation contributes
to the overall complexity of the downstream method used
for unlearning (e.g., Random Labeling and LoTUS in our
case). Among the unlearning methods, LoTUS is the only
one with auxiliary computations of linear complexity.

12. Cleaning the MUFAC Dataset
We identified duplicates within the forget, retain, valida-
tion, and test splits of the MUFAC dataset. More critically,



Figure 3. Duplicates in MUFAC: An example of a duplicate
within the retain set (top) and a critical duplicate shared between
the retain and forget set (bottom), which introduces information
leakage.

we discovered instances of information leakage across
these splits. To address this, we used image hashing to
detect identical images with different filenames in these
splits, as shown in Fig. 3.

After cleaning MUFAC, the retain set contains 5, 513
samples, and the forget set contains 1, 062 samples. We
provide the code for identifying duplicate images and
cleaning MUFAC in https://github.com/cspartalis/LoTUS.

Moreover, Figure 4 presents the class distribution of
samples in the clean version of MUFAC, showing that
the forget set and the unseen set (i.e., the validation set in
our case) follow different class distributions. The strong
performance of LoTUS in MUFAC further suggest that the
assumption of distributional similarity between the forget
and unseen sets, discussed in Sec. 3.2, can be relaxed.

13. Failure Analysis

Unlearning samples from MUFAC (the clean version)
presents greater challenges for all unlearning methods,
as reflected in significantly higher JSD scores in Tab. 1.
In addition, MUFAC & ResNet18 is the only benchmark
where LoTUS achieves the second-best Avg Gap rather
than the best. To explore the particularities of this dataset,
we investigated the orthogonality of the forget and retain
sets (i.e., how much they differ). Figure 5 presents that the
images in the forget and retain sets of MUFAC are more
similar, making unlearning more challenging.

Figure 4. Number of MUFAC Samples per Class & Split.
Unlike the balanced CIFAR-10/100 splits, MUFAC exhibits
imbalanced class distributions of that varies across the retain,
forget, test, and validation splits.

Figure 5. Orthogonality of Forget/Retain Sets. We measure
the similarity between samples in the forget and retain sets using
the absolute difference between their image hashes. MUFAC
exhibits significantly higher similarity between forget and retain
sets, complicating the unlearning process.

(a)
prediction:

pizza (b)
prediction:

potpie

Figure 6. Class Activation Maps and Model Predictions: (a)
before and (b) after class unlearning.

14. Class Unlearning with LoTUS

After retraining the model excluding a single pizza im-
age from the training set, the model preserves global
information that stems from the remaining pizzas in the
training set, being able to correctly classify many of them
(see Forget Acc. in Tab. 6). In instance-wise unleanring,
LoTUS prevents performance degradation by preventing
the elimination of global information. To do so, it uses



Metric (↓) Gold Std Finetuning NegGrad+ RndLbl BadT SCRUB SSD UNSIR SalUn LoTUS
Ti

ny
IN

Pi
zz

a Avg Gap 0.0000 0.2975 0.3250 0.2925 0.3125 0.4200 0.3650 0.5075 0.2925 0.0925
JSD×1e4 0.00±0.00 94.96±7.24 86.36±9.66 92.27±6.43 72.62±22.07 73.10±0.82 34.96±14.21 102.29±9.33 91.01±8.59 37.02±18.68
Time (min.) 42.15±16.05 3.23±0.01 3.24±0.03 3.27±0.03 1.59±0.01 4.05±0.03 3.19±0.03 1.01±0.01 3.98±0.01 1.30±0.02

C
-1

00
B

ea
ve

r Avg Gap 0.0000 0.2825 0.3725 0.2925 0.3000 0.3225 0.4325 0.4050 0.2850 0.1200
JSD×1e4 0.00±0.00 101.48±2.87 108.50±2.59 102.66±3.11 78.65±3.12 64.09±8.71 45.19±9.19 76.28±6.88 100.93±2.44 25.46±1.41
Time (min.) 4.00±0.11 0.43±0.00 0.44±0.01 0.45±0.00 0.26±0.01 0.55±0.00 0.83±0.03 0.20±0.01 1.16±0.01 0.23±0.01

Table 9. Class Unlearning with ResNet18 models and the TinyImageNet (TinyIN) and CIFAR-100 (C-100) datasets. We highlight the
best and second-best scores.

accuracy on labeled unseen pizzas, Acc(forig, Du) in
Eq. (11) as an estimator of global information.

Framing class unlearning as sequential instance-wise un-
learning applied to all class samples, global information is
ultimately eliminated (see Class Activation Maps of pizza
class in Fig. 6). Since there is no global information to esti-
mate, we also do not need the unseen set. To adapt LoTUS
to class unlearning, we set as objective the accuracy on the
forget set to become zero (an empirical observation by re-
taining the model without the specific class):

τd=exp
(
α(Acc(fun, Df )−�������:0

Acc(forig, Du))
)

(14)

Table 9 shows that LoTUS can be adapted to the class
unlearning task, outperforming state-of-the-art methods,
combining unlearning effectiveness and efficiency.

15. Contribution of Gumbel noise
In Tab. 10, we demonstrate the contribution of the introduc-
tion of Gumbel noise in the Softmax activation function. To
do so, we perform an ablation analysis using the Gumbel
Softmax and the Softmax with Temperature as activation
functions in LoTUS. Softmax with Temperature is defined
similarly with Eq. (15) as:

pi = st(π, τ) =
exp ((log πi) /τ)∑k
j=1 exp ((log πj) /τ)

, i = 1,. . ., k

(15)

16. Entropy-based Analysis of the Streisand
Effect

Further evaluation of the Streisand effect includes inves-
tigating the model’s uncertainty, as in [15]. In Fig. 7, it
is shown that LoTUS prevents an adversary from readily
inferring whether an instance is a member of the training
set, or whether it belongs to the forget or retain set, since
the entropy distributions of the forget/retain/test sets are
similar. In contrast, the existing unlearning method [17]
that also performs in the output space, but indiscrimi-
nately increases the entropy, clearly presents a significant
vulnerability to the Streisand effect.

Figure 7. Privacy Evaluation via entropy comparison: LoTUS
achieves indistinguishable entropy distributions between forget
and retain sets, similar to the orignal and gold standard models.
In contrast, Random Labeling produces disproportionately lower
entropy in the retain set, making it easier for adversaries to
distinguish retain from forget and unseen samples.

17. Social Impact
LoTUS can address privacy-related concerns, such as opt-
out requests, where users request their data to be deleted not
only from the databases, but also from the DNN models.
From a security perspective, LoTUS can be applied to
unlearn training samples modified by adversaries, which
may otherwise compromise the model’s performance. In
such scenarios, where privacy or security issues arise for
specific data points and need to be removed, instance-wise
unlearning is more consistent with real-world conditions
than class unlearning [5].



Vision Transformer ResNet18
TinyImageNet CIFAR-100 CIFAR-10 MUFAC TinyImageNet CIFAR-100 CIFAR-10 MUFAC

A
vg

G
ap

Gumbel-
Softmax

0.0150 0.125 0.0050 0.0200 0.1675 0.1200 0.0350 0.1250

Softmax with
Temperature

0.0675 0.0225 0.0050 0.0200 0.1850 0.1075 0.0675 0.1175

JS
D
×
1
e4

Gumbel-
Softmax

0.03 0.04 0.01 0.05 0.62 1.67 0.32 6.90

Softmax with
Temperature

0.15 0.04 0.01 0.08 0.65 1.36 0.41 7.33

Table 10. Contribution of Gumbel noise into the activation function. Ablation analysis using Gumbel-Softmax and Softmax with
Temperature as activation functions. LoTUS performs better with Gumbel-Softmax in the majority of the benchmarks.


