PhysicsGen — Supplementary Material

This Appendix provides additional details and supplemen-
tary material supporting the main content of the paper. Be-
low are the sections included in this Appendix:

¢ Section A: Training Setup

Provides detailed information about the configurations

and parameters used during the training phase of the mod-

els.
¢ Section B: Sound Propagation Appendix

— B.1 Evaluation Metrics: Outlines the criteria and meth-
ods used to assess the performance and accuracy of
sound propagation models within the simulation frame-
work.

— B.2 Location Sampling: Describes the methods used to
select and sample various urban locations.

— B.3 Receiver Placement: Details the strategies for plac-
ing receivers in the simulation environment.

— B.4 Sound Physics: Description of the physics behind
the sound propagation.

— B.5 Runtime Analysis: Runtime Analysis of sound
propagation tasks vs. simulation framework.

— B.6 Scalable Simulation Pipeline: Discusses the scal-
able simulation pipeline developed for processing
sound propagation data.

— B.7 Additional Qualitative Results: Presents additional
qualitative results, showcasing further analyses, visu-
alizations, and interpretations of the sound propagation
task.

* Section C: Lens Appendix

— C.1 Evaluation Metrics for Facial Landmark Detec-
tion: Outlines the metrics such as Euclidean distance
and mean absolute errors to evaluate facial landmark
detection accuracy.

— (C.2 Lens Physics: Explains the mathematical models
for simulating lens distortions, focusing on radial and
tangential components.

— (C.3 Lens Distortion Application Pipeline: Outlines
the process and tools used to apply lens distortions
to dataset images, highlighting the use of Python and
OpenCV.

— (C.4 Additional Qualitative Results: Visual results,
comparing the model’s landmark predictions against
actual distorted landmarks to assess accuracy.

* Section D: Ball Appendix

— D.1 Ball physics and kinematics: Description of the
physics behind the rolling and bouncing movement of
the ball

— D.2 Bouncing ball: Further evaluation and analysis of
the results of the three generative approaches for the
bouncing case. Here the detailed result tables, some
more predictions samples and some typical errors of
the network can be found.

— D.3 Rolling ball: Further evaluation and analysis of
the results of the three generative approaches for the
rolling case. Here the detailed result tables, some more
predictions samples and some typical errors of the net-
work can be found.

* Datacard D.3.2.

A. Training Setup

This appendix provides a detailed overview of the architec-
ture, input specifications, hyperparameters, and computer
resources used for the generative models utilized in this re-
search. Each experiment was conducted on a workstation
equipped with a single NVIDIA RTX 4090 GPU (24 GB
VRAM) unless specified otherwise.

The U-Net model architecture, adopted from [31], and
the Pix2Pix setup, based on [20], are designed to process
either grayscale or RGB image inputs. When necessary,
the input is extended by appending additional parameters
as a separate dimension. We followed the methodology
described in [18] for the Diffusion model while incorpo-
rating conditional inputs as separate dimensions alongside
the noised input image. Each model was constructed upon
a unified U-Net backbone, scaling from 64 to 1028 chan-
nels and reconverging to 64, ensuring consistency in model
design across all datasets. During training, different loss
functions were employed to suit each model’s architecture:
Mean Squared Error (MSE) loss for the U-Net and Diffu-
sion models, and a combination of Binary Cross Entropy
(BCE) loss and L1 loss for the GAN. These architectures
were applied consistently across all tasks introduced in this
paper, with each task trained and evaluated independently.
The ConvAE and VAE [25] models are both based on the U-
Net architecture, similar to Pix2Pix and the standard U-Net,
but adapted for their respective tasks. The ConvAE uses the
U-Net structure with skip connections disabled. The VAE
employs a similar hierarchical design.

The Stable Diffusion models were trained following the
training procedure outlined in [30], with variations in condi-
tioning mechanisms. In the standard Stable Diffusion (SD)
setup, the conditioned image and parameters were passed to
the denoising model via cross-attention and as additional di-
mensions with the noised input image. In contrast, the Sta-
ble Diffusion with Cross Attention Only (SD wCA) model
exclusively employed cross-attention for passing the con-
ditioned image and parameters. The DDBMs were trained
following the exact training procedure outlined in [38], en-
suring adherence to the methods described in the original
work. DDBMs were trained on four NVIDIA A100 GPUs
(80 GB VRAM each) to accommodate the increased com-
putational demand, while Stable Diffusion was trained on
a single A100 GPU. All other models, including U-Net,
Pix2Pix, and standard Diffusion models, were trained on
a single NVIDIA RTX 4090 GPU.

Table 4. UNet Training Hyperparameter

Hyperparameter | Value
Batchsize 18
Learning Rate 1x107%
Epochs 50
Optimizer Adam
Adam Betas (0.5, 0.999)

Table 5. Pix2Pix Training Hyperparameter

Hyperparameter Value
Batchsize 18
Learning Rate Discriminator | 1 x 10~4
Learning Rate Generator 2x 1074
Epochs 50

L1 Lambda 100
Lambda GP 10
Optimizer Adam
Adam Betas (0.5, 0.999)

Table 6. DDPM Training Hyperparameter

Hyperparameter | Value
Batchsize 18
Learning Rate 1x 1074
Epochs 50

Noise Steps 1000
Optimizer Adam
Adam Betas (0.5, 0.999)

Table 7. StableDiffusion Training Hyperparameters

Table 8. DDBM Training Hyperparameters

Hyperparameter Value

O max 80.0

O'min 0.002
Odata 0.5
Covariance (Cxy) 0

Number of Channels 256
Attention Levels [32, 16, 8]
Number of Residual Blocks | 2

Sampler

Attention Type

Learning Rate

Dropout

EMA Rate

Number of Head Channels

real-uniform
flash

0.0001

0.1

0.9999

64

Hyperparameter Value
Number of Timesteps 1000
Beta Start 0.0015
Beta End 0.0195
Down Channels [256, 384, 512, 768]
Mid Channels [768, 512]
Number of Heads 16

LDM Batch Size 16
Autoencoder Batch Size 4
Discriminator Start 5000
LDM Learning Rate 1x1074
Autoencoder Learning Rate | 1 x 107°
Codebook Weight 1
Commitment Beta 0.2
Perceptual Weight 1

KL Weight 0.000005
LDM Epochs 100

B. Sound Propagation Appendix
B.1. Evaluation Metrics

This appendix section details the evaluation metrics used,
focusing on the Weighted Mean Absolute Percentage Error
(WMAPE) and the implementation of ray tracing to deter-
mine line-of-sight (LoS) conditions between a sound source
and various points on a sound propagation map.

Weighted Mean Absolute Percentage Error: The calcu-
lation of the wMAPE is adjusted to address cases where
the true value of the noise map is zero but the predicted
value is non-zero. In such instances, the script sets the er-
ror for these specific pixels to 100%. This method accu-
rately quantifies the total error, especially when the model
predicts sound in areas where sound waves could not real-
istically reach according to the true data.

Line of Sight: Ray tracing is employed to establish LoS
conditions between a sound source and various points on a
sound propagation map. The process initiates by establish-
ing a grid that represents the mapped area, with the sound
source positioned at the center. For each point on this grid, a
direct line is drawn from the source to the point. The script
then checks for any obstructions along this line.

The ray-tracing function progresses by incrementally
moving along the line from the source to the target point.
It checks if any part of the line intersects with obstacles,
represented by zero values on a binary image map. If an
obstruction is encountered before the line reaches the target
point, that point is marked as not having a line of sight to
the source; otherwise, it is considered to have a line of sight.

B.2. Location Sampling

In order to conduct sound propagation studies that are re-
flective of diverse urban environments, our location sam-
pling was designed with specific criteria to ensure a bal-
anced and comprehensive dataset. The location sampling
methodology for sound propagation studies required each
selected location to contain at least ten buildings within a
200-meter radius of the designated sound source. Addition-
ally, to avoid anomalous acoustic results and to simulate a
realistic setting where sound sources are typically not posi-
tioned directly against structures, no buildings were allowed
within a 50-meter radius of the sound source. Figure 9 il-
lustrates the urban areas selected for this study, showcasing
the distribution of buildings relative to the sound source in
the center.

Locations were randomly sampled across ten cities, pro-
viding a broad geographical spread and a variety of urban
layouts. The locations sampled include: Hamburg, Han-
nover, Augsburg, Bonn, Munich, Schwerin, Berlin, Paris,
Stuttgart, and Aachen.

For each city, 2500 unique locations were selected, con-
tributing to a total of 25,000 data points for the study. The

Figure 9. Satellite image of a sampled location for sound propa-
gation studies. Buildings are marked in red, illustrating the distri-
bution within the area. The blue circle represents the 200-meter
radius within which at least ten buildings are required, while the
green circle indicates the 50-meter radius that must be free of any
buildings to ensure a clear propagation path from the sound source.

dataset was then divided into training, evaluation, and test-
ing sets with a split of 80%, 15%, and 5%.

B.3. Receiver Placement

The receiver placement for our sound propagation simula-
tions is a critical component that directly influences the ac-
curacy and relevance of our results. To achieve an optimal
setup, we utilized the NoiseModelling framework [4]. Our
specific placement strategy required a combination of preci-
sion and broad coverage, which was not fully supported by
any single existing script within the framework. Therefore,
we integrated two available scripts and further developed a
custom WPS (Web Processing Service) to meet our specific
needs.

The first script we used was Regular_Grid, which cal-
culates a regular grid of receivers. This script uses a sin-
gle geometry or a table of geometries to generate receivers
evenly spaced by a specified distance (delta) on the Carte-
sian plane, measured in meters. This method ensures a sys-
tematic and uniform coverage across the studied area, pro-
viding a comprehensive baseline for sound propagation as-
sessments.

(a) Sattelite image (b) Receiver grid

(c) Urban layout

Figure 10. Starting with the selection of a 500m? area (a), build-
ings are identified, followed by placing a receiver grid (b). The
urban layout (c) is then used for creating samples for the dataset.

The second script, Building_Grid, is designed to place
receivers specifically around building facades. This script
generates receiver points approximately 2 meters from the
building facades at a given height, facilitating detailed anal-
ysis of sound interactions with building surfaces, which are
critical for urban acoustic modeling.

By combining these two approaches, we crafted a re-
ceiver placement strategy that not only maintains a uni-
form grid for broad coverage but also includes strategically
placed receivers around building facades and edges. This
hybrid approach ensures that our simulations accurately re-
flect sound propagation both across open areas and in close
proximity to structural barriers, thereby enhancing the pre-
cision of the simulation results at key locations.

B.4. Sound Physics

Following [35], for a discrete set of receivers I?, the am-
plitude Lﬁk of receiver Ry, at frequency j is computed via
iterative differences:

Ly = Ly — Adivg, — A

atmRk_
_ A

J
difg, - Agrde (8)
where

L{,Vmodels the source,

Agiv r, Captures the geometrical spreading,

Aj

atm p, YEPTESENts the atmospheric absorption,

Afii n models diffraction,
k

Aj

grd, the ground effect - which is neglected in our study.

Several environmental factors influence the sound level
at a receiver:

Geometrical Spreading: This factor accounts for the
dispersion of sound waves as they propagate through the
medium. The decrease in sound intensity due to geometrical
spreading is given by:

Adka = 20 loglo (dy) + 11 (9)

where d; is the distance between the sound source and the
receiver.

Atmospheric Absorption: This factor represents the
loss of sound energy as it travels through the atmosphere,
influenced by the atmospheric conditions such as humidity
and temperature. It is calculated as follows:

di

7 _ . v
~ %airy000

atmRk

(10)

where «,;, is the atmospheric absorption coefficient.

Table 9. Model vs. Simulation Performance Comparison for Sin-
gle Sample Processing. The complex source is a single test sam-
ple for a more complex source with 28 descriptive sound signal
sources for the simulation. This illustrates how the processing time
increases significantly with more complex signal sources. It is im-
portant to note that this analysis may not provide a completely fair
assessment from a theoretical perspective, as no efforts were made
to optimize the simulation codes for GPU execution.

Model - Condition Mean Runtime (ms)

convAE 0.128
UNet 0.126
Pix2Pix 0.138
DDPM 3986.353
SD(w.CA) 2961.027
SD 2970.86
DDBM 3732.21
Simulation - Baseline 20471.7
Simulation - Diffraction 20602.7
Simulation - Reflection 25097.3
Simulation - Combined 29239.5
Simulation - Combined 186229.5
- 3rd Order Reflections

Simulation - Combined 540000

- Complex Source

Diffraction: Sound waves can bend around obstacles, a

phenomenon modeled by the diffraction factor:
i J10log,(3+ RC"s) if RC76 > -2
difry 0 otherwise
1D
where) is the wavelength of the sound, C" is the diffraction
coefficient, and ¢ is the path length difference expressed in
m between for direct and diffracted paths.

Reflection Adjustments: Reflections off various sur-
faces can significantly modify the sound level. This factor
adjusts the sound power level based on the number of re-
flections and the properties of the reflective surfaces:

L) = L™ s % 101og10(1 — qere) (12)

where n,..y is the number of reflections and e, is the
absorption coefficient of the reflecting surfaces.

B.5. Runtime Analysis

The runtime analysis, as detailed in Table 9, highlights the
performance comparison between various models and sim-
ulation approaches for single sample processing.

B.6. Scalable Simulation Pipeline

The dataset generation pipeline visualized in Figure 11 is
a crucial component of our study, developed to efficiently
process sound propagation data in diverse urban settings.

Utilizing the NoiseModelling framework [4], we have au-
tomated the data input and simulation processes within
a Docker-containerized environment. The pipeline com-
mences with the automatic download of a 500m? area map
from OpenStreetMap for each location using the Over-
pass API, followed by their import into the NoiseModelling
framework alongside the signal source.

kubernetes
dp doxPoss
‘,/ docker \\

—
[Fetch OSM-data]

[Location sampling }

Enrich based on
scenario

Import data into
i ing v4.0

3
g
3
Generate receivergrid | | £ ™
2 e S
Pre-Datasets - Simulate sound] 3y
; distribution H 9‘
\ 3
Interpolate soundmap Pegr e

Export buildings &
\ soundmap /
/

——— Buildings

Figure 11.
pipeline.

Detailed visualization of the dataset generation

Considering the computational intensity of this process,
with an average duration of 30 seconds per sample, our
pipeline is structured for scalability. It operates on a Ku-
bernetes cluster with 40 pods, enabling us to complete the
generation of the entire dataset, encompassing 25,000 data
points for each complexity level, in approximately 20 hours.

B.7. Additional Qualitative Results

Figure 13 visualizes the error patterns for Pix2Pix, Unet and
DDPM, illustrating behavior that is similar across all the ar-
chitectures evaluated. The Unet model tends to blur areas
where it is uncertain about the sound propagation results.
Instead of accurately replicating the complex reflection pat-

Baseline Reflection Diffraction Combined

o
5
s0_
- N N w0y
3038
B
w0
O o 0 0 40 W 0 0 20 %0 40 %0 0 10 20 %0 €0 %0 0 0 20 W 40 50
. . . x o
Baseline Reflection Diffraction Combined

w
w
w
;

Figure 12. Comparison of true labels for baseline, reflection,
diffraction, and combined tasks for two samples to visualize their
differences.

Unet Prediction GAN Prediction

0
DDPM Prediction
n
0
o€
20
25¢ 10

0 S 100 150 200 25 0 50 100 150 200 250 0 50 100 15 200 250 0 50 100 15 200 250

Figure 13. Visualization of unique error patterns for Pix2Pix,
UNet, and DDPM models in sound propagation simulations. Each
model’s approach to uncertain areas and its replication of reflec-
tion patterns are depicted.

decibels (dB)

Figure 14. Comparing the output of the physical simulation with
the predictions for a single sample within the baseline task dataset.

decibels (dB)

Figure 15. Comparing the output of the physical simulation with
the predictions for a single sample within the diffraction task
dataset.

terns found in the dataset, the GAN attempts to fill these
uncertain areas with a simplified, repetitive texture that does
not match the true reflection dynamics.

In contrast, the diffusion model attempts a more direct
replication of the reflection patterns visible in the training
data. However, the error patterns observed with diffusion
models, including DDPM, SD, and DDBMs, are highly
similar. These models tend to overcompensate, introducing
reflection patterns into areas where they are not physically
plausible. This results in a noisy and sometimes unrealistic
simulation output, particularly in regions where sound re-
flections should be minimal or absent based on the physical
layout.

Table 10. Quantitative evaluation across all tasks for all architec-
tures with a batch size of 16 during inference. Best overall results

in bold, second best underlined.

Model Task MAE | wMAPE | Runtime/ |
LoS NLoS LoS NLoS Sample (ms)
Simulation Base 0.00 0.00 0.00 0.00 204700
convAE Base 3.67 274 2024 67.13 0.128
VAE [25] Base 392 284 2133 7558 0.124
UNet [31] Base 229 1.73 1291 37.57 0.138
Pix2Pix [20] Base 173 1.19 936 6.75 0.138
DDPM [18] Base 242 326 1557 51.08 3986.353
SD(w.CA) [30] Base 3.76 334 17.42 35.18 2961.027
SD Base 2.12 1.08 1323 3246 2970.86
DDBM [38] Base 1.61 2.17 1750 6524 3732.21
Simulation Dif. 0.00 0.00 0.00 0.00 206000
convAE Dif. 359 8.04 13.77 32.09 0.128
VAE Dif. 392 822 1446 3257 0.124
UNet Dif. 0.94 327 422 2236 0.138
Pix2Pix Dif. 091 336 351 18.06 0.138
DDPM Dif. 1.59 327 825 2030 3986.353
SD(w.CA) Dif. 246 772 10.14 31.23 2961.027
SD Dif. 1.33 507 8.15 2445 2970.86
DDBM Dif. 1.35 335 11.22 23.56 3732.21
Simulation Refl. 0.00 0.00 0.00 0.00 251000
convAE Refl. 383 6.56 20.67 93.54 0.128
VAE Refl. 4.15 632 21.57 9247 0.124
UNet Refl. 229 572 12775 80.46 0.138
Pix2Pix Refl. 2.14 479 11.30 30.67 0.138
DDPM Refl. 274 793 17.85 80.38 3986.353
SD(w.CA) Refl. 381 6.82 19.78 81.61 2961.027
SD Refl. 253 526 15.04 5527 2970.86
DDBM Refl. 193 6.38 1834 79.13 3732.21
Simulation Comb. 0.00 0.00 0.00 0.00 251000
convAE Comb. 293 5.19 18.61 4892 0.128
VAE Comb. 3.08 535 19.59 5024 0.124
UNet Comb. 1.39 2.63 10.10 45.15 0.138
Pix2Pix Comb. 1.37 267 9.80 40.68 0.138
DDPM Comb. 1.26 221 13.07 40.38 3986.353

Pix2Pix

VAE

DDPM

convAE

SD

Figure 16. Comparing the output of the physical simulation with
the predictions for a single sample within the reflection task
dataset.

Unet

DDBM

e 5 9 8 =
decibels (dB)

M
8

5

|

UNet Prediction

LoS error NLoS error

3
30—~
o
EERCA
»n
20g
2
)
2 1
N 100
s
o

NLoS error

(a) UNet

Pix2Pix Prediction LoS error

decibels (dB)

(b) Pix2Pix

LoS error

SD Prediction

NLoS error

&
s0
w0
£
2

10
o

True DDBM Prediction LoS error NLoS error

w©
3
»3
55
T 02
g
10°
\ s
0

(d) DDBM

decibels (dB)

(c) SD

Figure 17. Comparing the output of the physical simulation with
the prediction of UNet (a), Pix2Pix (b), stable diffusion model
(c) and DDBM (d) for a single sample within the reflection task
dataset, distinguishing between the MAE in LoS and NLoS.

C. Lens Appendix

C.1. Evaluation Metrics for Facial Landmark De-
tection

This appendix section details the evaluation metrics used to
assess the accuracy of facial landmark detection, focusing
on the Euclidean distance and mean absolute error calcula-
tions for both combined and separate x and y coordinates.
Euclidean Distance: The primary metric for evaluating the
accuracy of facial landmark predictions is the Euclidean dis-
tance between predicted and true landmarks. This measure
computes the root mean square error across all landmarks,
providing a comprehensive gauge of overall prediction ac-
curacy.

Mean Absolute Error for X and Y Coordinates: Addi-
tionally, the MAE for x and y coordinates is calculated sep-
arately. This breakdown allows for a detailed analysis of
the model’s performance along each axis, highlighting any
directional biases or discrepancies in landmark prediction.

These metrics provide a dual approach to evaluating
landmark detection performance—offering both a holistic
measure via Euclidean distance and a directional sensitivity
via separate MAE calculations.

C.2. Lens Physics

The Brown-Conrady model is used in image processing to
correct lens distortions by modeling both radial and tan-
gential components [12]. While the paper focuses on the
tangential aspects of distortion, here we provide a detailed
mathematical formulation of the entire Brown-Conrady
model, including both radial and tangential distortion cor-
rections.

Radial distortion is typically dominant in optical systems
and is characterized by its impact varying with the square of
the distance from the optical center. This effect is modeled
using three coefficients: ki, ko, and k3, which adjust the co-
ordinates as a function of radial distance 2 = 2% 4+ 2. The
full expressions for the distorted coordinates incorporating
both radial and tangential distortions are as follows:

Taist = (1 4+ kyr? + kor* + kar®) (13)
Y+ {Qplxy +po (7"2 n 21;2)} : (14)
Yaist = Y(1 + kir® + kor® + kgr®) (15)
ty+ {m (2 +24%) + 2p2xy} . (16)

These equations describe how each image point (z, y) is
displaced to (2 4ist, Ydise) due to lens distortions.

C.3. Lens Distortion Pipeline

This appendix details the methodology for applying lens
distortions to images within our dataset, using a compu-
tational pipeline built on Python and OpenCV [5]. The
process leverages a pre-defined set of distortion parameters
stored in a CSV file, including tangential coefficients, to
systematically alter each image.

Distortion Computation: Each image is processed se-
quentially. The script calculates the distortion for each pixel
using the specified parameters (radial coefficients k1, ko, k3
and tangential coefficients p1, p2) and the camera calibra-
tion data (focal lengths fz, fy and principal point coor-
dinates cz, cy). These calculations transform the original
pixel coordinates to their new distorted positions.

Image Remapping: Using OpenCV’s remap function,
the distorted pixel coordinates are mapped back onto the
original image, creating the visually distorted output. This
process ensures that each pixel’s new location reflects the
simulated lens.

C.4. Additional Qualitative Results

This section provides a visual evaluation of the generative
models’ performance on the lens distortion task, showcas-
ing some examples of model predictions and landmark de-
tection.

Label Unet Pix2Pix

Figure 18. Comparison of simulation data with predicted land-
marks for a single sample. The left image shows the input, while
the right image overlays the predicted (blue dots) and true (red
dots) landmark positions on the model output. For clarity, only
every second landmark is visualized.

Label Unet Pix2Pix

DDPM SD(w.CA)

29

Unet

SD(w.CA) SD

Figure 19. Comparison of simulation data with predicted land-
marks for a single sample. The left image shows the input, while
the right image overlays the predicted (blue dots) and true (red
dots) landmark positions on the model output. For clarity, only
every second landmark is visualized.

SD
!

Pix2Pix

Pix2Pix: 1.511 o DDPM: 1.163

250 250
100 150 200 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Label True Pix2Pix: 1.926 o DDPM: 1.442

J 25 250
100 150 200 100 150 200 250 50 100 150 200 250 0 50 100 150 200 250

Pix2Pix: 1.807 o DDPM: 1.642

25 250
100 150 200 0 S0 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Label True Pix2Pix: 2.547 o DDPM: 1.826

250 250
100 150 200 50 100 150 200 250 0 50 100 150 200 250 O 50 100 150 200 250

Figure 20. Comparing the input and output of the simulation with
the predictions from Pix2Pix and DDPM for two random samples
within the lens distortion task dataset. Green dots represent de-
tected landmarks in the label image, red dots indicate the actual
landmarks post-lens distortion, and blue dots denote the predicted
landmarks by the models.

D. Ball Appendix
D.1. Ball physics and kinematics
Rolling ball. The kinematic problem of the rolling ball
can be relatively simply described using Newton’s law and
the angular momentum balance equation.
The equations of motion for the X and Y directions are de-
rived from the force balance acting on the ball, where no
movement occurs in the Y direction (see figure 21):
Fay=mx*d with Fuy=Fg+Fy+ Fug
Equation of motion along x:
m*gx*sin(f) — Fyr =mx* & (17)
Equation of motion along y (no movement):

Fy —mxgxcos(8)=0 (18)

To describe the rotation and the ball angle, the angular
momentum balance from rotational mechanics can be used:

Faprxr=Jxa>0& Fgrxr=Jx¢ >0 (19)

In the description of this first simple case, the ball posi-
tion along the X-axis and the ball angle are derived twice.

FN
»

l; B

X FHR ’FG

—_—

Figure 21. Forces overview for the rolling ball

Bouncing ball. The movement of the bouncing ball is
much more complex to describe than the rolling case. For a
better overview, the movement is divided into different sec-
tions (see different colors in figure 22).

First, the ball is released from a defined height without any
initial velocity (green area). Until it hits the inclined ground
surface, it is in free fall. Derived from Newton’s law, the
following equations applies:

Fy=mx*a &mxj=-mxg< §j=—g (20)

Sy =yo— 51 @

Figure 22. Splitting the movement of the bouncing ball

Subsequently, the contact with the ground (red point on
figure 22) can be represented using a simple spring-damper
model (see figure 23). It is assumed that the Pymunk [3]
physics simulation used calculates similarly, as an elastic-
ity factor can be defined in the settings and not all calcula-
tions of the physics engine could be retraced. To be able to
describe the whole ball movement, this section mainly fo-
cuses on determining the impact velocity of the ball. This
is where the weight force, the spring force and the damping
force with their respective constants m (ball mass), ¢ (spring
stiffness) and d (damping constant) occur.

Fy+Fo+ Fy=mxj

22
mx§+dxy—cx(r—y)=—-m=xg 22)

>
>

TP

Figure 23. Spring-damper model to simulate the ball impact and
bounce on the ground

After the impact, the next motion section (the orange part
in figure 22) is assumed to be an oblique throw with the
initial velocity vy, which was calculated using equation 22
above. Additionally, the principle “angle of incidence = an-
gle of reflection” is used to determine the angle of rebound
6 from the ball; this corresponds to the ground slope [after
the first ground contact.

The following equations of motion for X and Y are derived

from Newton’s law:

m* I =m* gxsin(f) (23)
mx = —mx* g xcos(B) (24)

The equations can also be expressed as functions of time
by integrating them. vy is the initial velocity of this third
phase of motion, which was calculated above in the second
part of the movement (impact on the ground).

x:g*%n(ﬁ)*t?+vo*sm(9)*t+mo (25)
y:_g*%s(ﬂ)*ﬁ-kvo*cos(ﬂ)*t—f-yo (26)

When the ball hits the ground for the second time after
the ”oblique throw”, the orange motion phase ends and the
purple phase begins. In between, there is another bounce,
where equation 22 helps to determine the second rebound
velocity.

The further movement is then described by the above equa-
tions 23 and 24. This requires the impact angle «, which
can be calculated at the end of the orange phase as follows:

’Ul _ —gx* tAuftreff + Vy,0
Vg Vz,0

27

tan (o) =

L Auftres s can be calculated using the equation of motion
in the y-direction by setting it to zero.

Finally the entire ball movement can be described step

by step using the equations listed above. The rotation of
the ball is determined as for the rolling case, by forming
the angular momentum balance for each bounce, taking into
account the friction force of the ground.
In the bouncing case, all degrees of freedom (movements in
the X and Y directions, as well as the ball rotation) contain
second-order terms. In addition, it becomes evident through
the more complex equation 22 of the ball impact that the
motion along the Y-axis is more complex here than along
the ground.

D.2. Bouncing ball
D.2.1 Further evaluation and results

Another result for the bouncing ball is shown in figure 24.
Here it can be seen that the ball position varies slightly de-
pending on the algorithm. The biggest error is made by the
diffusion network along the vertical: the ball is drawn about
9px too low.

In the table 11, the average results for all evaluation cri-
teria and the three AI methods are shown.

In order to supplement the main section with a few more
details on the respective Al networks, their strengths and
weaknesses are now summarised. A few typical error pat-
terns are also listed for each network.

Initial State True for 710ms later VAE UNet

® o - (2
Pix2Pix DDPM SD(w.CA) SD
() I3 L ®

Figure 24. Predictions of the generative Al compared to the
physics simulation for the rolling ball

Pix2Pix (GAN architecture):

* Most stable mapping of the bouncing ball problem: best
results achieved relative to the number of errors

* Most error cases for the ball rotation: 15% of the gener-
ated images are not interpretable regarding the error met-
ric. For the valid” 85%, there is an average error of
17,2° with a standard deviation of 20,8°, reflecting the
high variance in the results.

* Only one ball appears on the generated images in 93%
of cases, while in the remaining 7%, no proper ball is
represented. In these cases, either no ball is present on
the image or the depicted shape is too fragmented and has
no roundness at all.

* The network most frequently places the “target ball” in
the X-direction (i.e. along the ground slope) behind the
start ball. In fact, the generated image must always show
the ball with a larger X-coordinate than on the input im-
age, otherwise the correctness of the physics is not given.
Only in 1% of the cases the target ball is in front of the
start ball; otherwise all valid predictions correctly repre-
sent the rolling along the inclined surface.

* Good representation of the background: the line struc-
tures are most accurately represented for the horizontal
and vertical lines. The diagonal segments are usually only
partially drawn.

 Correlations between error and simulation parameters:

— Position error in the X-direction increases the most
with a larger time interval between input image and
prediction, followed by an increasing ground inclina-
tion.

— Position error in the Y-direction: a slight correlation is
visible here between increasing start height of the ball
and increasing error, although the ground inclination
and the time interval have almost the same influence.

— Ball angle deteriorates when the time interval between
the start and target images increases.

— No real correlation is observed for the roundness error.

UNet:

Table 11. Prediction results for the Pix2Pix, UNet, autoencoder and diffusion networks for the bouncing ball

Model Metric Mean | Standard | Error Number of Position to
deviation balls start ball
0/ >1/Error Ahead / Error
Position X 6.28 7.98 7%
Position Y 11.7 12.8 7%
Pix2Pix Rotation 17.2 20.8 15% T% [0% / 0% 1% 1 7%
Roundness 0.56 0.14 10%
Ground slope 0 0 0%
Position X 5.53 7.48 20%
Position Y 10.8 12.2 20%
UNet Rotation 15.2 229 30% 19% /0% / 1% 0% / 20%
Roundness 0.74 0.21 35%
Ground slope 0 0 0%
Position X 4.69 6.13 89%
Position Y 6.25 6.94 89%
VAE Rotation 31.0 39.8 97% | 20% / 0% / 68% 1% / 89%
Roundness 0.90 0.14 99%
Ground slope | 1.00 0.04 25%
Position X 4.24 3.85 89%
Position Y 6.08 5.93 97%
convAE Rotation 12.2 8.61 99% 11% / 0% / 86% 0% 1 97%
Roundness 1.06 0 99.9%
Ground slope | 1.00 0.05 26%
Position X 791 9.04 3%
Position Y 15.5 13.7 3%
DDPM Rotation 32.9 33.8 8% 0% /1% /2% 6% / 3%
Roundness 0.61 0.17 6%
Ground slope 0 0.08 3%
Position X 40.0 48.5 0%
Position Y 24.8 22.9 0%
SD(w.CA) Rotation 61.1 52.5 21% 0% / 0% ! 0% 12% 1 0%
Roundness 0.53 0.15 2%
Ground slope | 1.80 1.51 0%
Position X 8.55 11.9 0%
Position Y 16.2 14.1 0%
SD Rotation 34.2 37.8 6% 0% / 0% ! 0% 5% /1 0%
Roundness 0.47 0.11 0%
Ground slope | 0.14 1.08 0%

General: slightly better results in position and rota-
tion compared to the Pix2Pix, if only the successfully
analysable images are considered. Accuracy in the X-
direction is about 1px better and rotation about 2° better.
Algorithm stability: much more unstable: 20% to 35%
of the predictions are not evaluable. Many images are
generated that contain no ball or a shape that does not
approximate a ball.

Target ball placement: the network also places very well

the target ball "behind” the start ball in terms of the X-
coordinate. All valid result images comply with the phys-
ical correctness of rolling along the ground slope. Where
this is not fulfilled, the images are not evaluable.

Background depiction: blurry representation of the back-
ground. As seen in the result images, both the ground
and the sky are depicted almost monotonously. The UNet
seems unable to represent fine line structures; only very
attenuated vertical lines can be guessed. Similarly, the

different colours of the lines are not shown: the ground

appears uniformly gray and the sky light green.

* Correlations between error and simulation parameters:

— Position error in the X-direction increases most with a
larger time interval, followed by an increasing ground
inclination (similar to the Pix2Pix)

— Position error in Y-direction increases mainly with
greater starting height of the ball, although the corre-
lation remains relatively weak (as with the Pix2Pix)

— Ball angle deteriorates when the time interval between
the start and target image increases

— For roundness, unlike the Pix2Pix, there is a depen-
dence on the time interval; if this becomes larger, the
error also increases.

Diffusion: Three different models were examined under
the category of “diffusion”: the DDPM, stable diffusion
with cross-attention (SDw.CA) and without (SD). In gen-
eral, the results of the DDPM and SD are very similar to
each other, with the SD showing a little more stability; the
SDw.CA performs significantly worse except for the map-
ping of ball roundness, which is very good.

For the DDPM network different approaches and settings
were tested because the results of the first runs with 256px
images were very poor. On one image, several balls ap-
peared at randomly distributed positions or the prediction
was noisy and contained artefacts (see figure 25). Since no

Diffusion for 128px

R

@ _ P

0‘ o e
e R |
5% | [EE |

Figure 25. Typical predictions for the DDPM model trained with
128 and 256px images

Diffusion for 256px

approach or parameter set could be found to achieve better
predictions with this algorithm, the image size was progres-
sively reduced. This had a very positive influence on the
training, making the result images from the 64px network
comparable to the Pix2Pix and UNet approaches. There-
fore, only results for 64px images are shown in this paper
for the DDPM, which explains the blurriness caused by up-
scaling the predictions to 256px. With the stable diffusion
approach there were no such resolution problems, so that
the 256px images could be used directly.
¢ In general, the error criteria of the diffusion images are
worse than those of the other analysed networks. How-
ever, depending on the error measure, between 4 and 7%
fewer non-evaluable images are produced compared to
the Pix2Pix and significantly fewer than with the UNet,
which has the highest error rate.

* In the position, the accuracy is between 25-40% worse.
Rotation proves to be the biggest weakness of the ap-
proach, as the error here is twice as high as with Pix2Pix
and UNet. The roundness is mapped similarly to the other
methods and even a bit better for the stable diffusion. This
is the strength of this method, which delivers very high-
quality images with round balls. The SD approach depicts
the roundness the best without generating error images re-
garding this criterion.

* It is noticeable that the ground slope cannot be evaluated
in approx. 3% of the images for the DDPM. Depending
on the diffusion method, the mean error is also different
from zero, which was not the case either with Pix2Pix or
with UNet.

* Regarding the number of balls in the result images, the
diffusion approach performs best. For the DDPM in 97%
of the images, only one ball is visible (which is not even
achieved by GAN at 93%) and the remaining 3% is di-
vided between images with multiple balls and error im-
ages. With stable diffusion, there are even no images with
several or no balls.

* The approach is a bit less reliable in terms of mapping the
roll of the target ball along the ground slope. SDw.CA
in particular performs worst with 12% of the cases where
the target ball is located ahead the start ball along the X-
axis, which is physically impossible. The DDPM and SD
shows quite the same results with about 5 to 6% ahead
target balls. Nevertheless, the predictions that correctly
represent this relationship are not much worse with diffu-
sion, as the error rate is reduced.

* The prediction images correctly represent the different
colors as well as the line structures in the sky and ground.
Due to the blurred image, the visual evaluation is worse
for the DDPM, but all "image elements” are present. Both
stable diffusion algorithms generate very high-quality im-
ages in which the colors, the background pattern and the
ball itself are mapped very accurately.

* Correlations between errors and simulation parameters:

— Generally, there are hardly any recognizable correla-
tions with the simulation settings: only for the position
error along the X axis and the ball rotation some rela-
tionships can be noticed.

— Position error in X direction has a slight dependency
on the time interval between input and target image (a
larger interval leads to greater inaccuracy)

— Ball angle deteriorates the further the ball of the in-
put image has moved along the ground surface. For
input images with a ball already in the middle of the
image, the rotation is slightly worse. This correlation
is slightly stronger for the SD approach compared to
the DDPM.

— No correlations are present for the Y position and ball
roundness errors.

Auto encoder: Two approaches were examined for the
autoencoders: the variational AE (VAE) and the convolu-
tional AE (convAE). However, no evaluable results could
be generated by the networks for the bouncing ball. De-
pending on the error criterion, between 89 and 99% of the
predictions are evaluated as invalid (see results in Table 11).
In general, it can be said that the obtained images are very
blurred. In addition, the ball is rarely displayed as a single
point but is often drawn out as if it were taking up several
positions in the image. The ground surface is also not dis-
played cleanly as a single line; instead, it looks as if sev-
eral slopes are depicted using different lines. There are also
small white stripes in the ground at some images. These
typical artefacts or errors of the autoencoder can be seen
in Figure 26. Structurally, meaning in terms of colors and
background pattern, the predictions look similar to the UNet
results, as the networks are closely related in design.

Since so many generated predictions are considered invalid
when evaluating the error criteria, the results for the bounc-
ing ball in terms of position, angle and roundness are hardly
relevant. Therefore, no correlations between simulation pa-
rameters and error measures are provided here.

VAE convAE

FJ o ’

Figure 26. Typical error patterns with auto encoders (VAE or con-
VvAE) for the bouncing case - no clean representation of the ground
surface and very blurred ball

In table 12 the detailed results of different training
and evaluations are visible for the Pix2Pix and UNet ap-
proaches. Indeed for these two networks many runs were
carried out to see how the models behave over multiple
trainings. In the overview tables already shown in this pa-
per, the mean values of all runs of one method are shown
for each error criterion.

D.2.2 Typical error patterns

In this section, typical incorrect predictions of the analysed
generative networks for the bouncing ball are presented to
illustrate the above analysis and the error rate of the net-
works. Due to the poor results of the autoencoders, no error
images are presented for this network structure (the typical
appearance of the predictions has already been explained
above). The visible errors or inaccuracies are described in
the caption of the respective figures.

DDPM UNet Pix2Pix

° il

o °
Figure 27. Several balls represented on the predictions of the
DDPM, the UNet and the Pix2Pix algorithms.

DDPM UNet Pix2Pix

——

Figure 29. Not-round ball and imperfect color separation between
both ball halves (only Pix2Pix predictions)

SD(w.CA)
Il \\ | 1

Figure 30. Position of the target ball ahead of the start ball along
the X-axis (1st line: start ball; 2nd line: corresponding network
prediction)

GAN SD(w.CA)

e
|

-/

Figure 31. Errors concerning the ball position and rotation (1st
line: true images; 2nd line: corresponding net prediction)

Table 12. Detailed results of each training run for the Pix2Pix (GAN) and UNet networks where multiple runs were carried out to get more

representative mean values for the bouncing ball

Rotation Position X | Position Y | Position Roundness
Mean / Std / Err Mean / Std | Mean/ Std Error Mean / Std / Err
15.9/18.8 /58 (4%) 6.46/8.27 | 12.2/129 6 (0%) 0.50/0.11/16 (1%)
Pix2Pix 16.7/19.9/112 (7%) | 6.31/8.17 | 12.1/13.0 14 (1%) 0.51/0.12/23 (1%)
14.5/20.5/587 (37%) | 5.71/7.25 | 10.3/11.9 | 433 (27%) | 0.73/0.20/ 612 (38%)
21.6/24.1/229 (14%) | 6.65/8.23 | 12.4/13.3 14 (1%) 0.51/0.11/19 (1%)
15.1/23.4/495 (31%) | 530/7.44 | 10.8/11.8 | 310 (19%) | 0.73/0.22 /542 (34%)
UNet 15.9/23.7/398 (25%) | 5.55/7.62 | 10.9/12.1 | 261 (16%) | 0.75/0.21/540 (34%)
152/24.1/458 29%) | 5.54/7.62 | 11.3/129 | 274 (17%) | 0.74/0.22 /520 (33%)
14.5/20.5/587 37%) | 5.71/7.25 | 10.3/11.9 | 433 (27%) | 0.73/0.20/612 (38%)
Ground slope Number of balls Position to start ball
Mean / Std / Error 0 / >1 / Error Ahead / Error
0/0/0 (0%) 3(0%) /1 (0%) /0 (0%) 9 (1%) /6 (0%)
Pix2Pix 0/0/0(0%) 12 (1%) /2 (0%) / 0 (0%) 16 (1%) / 14 (1%)
0/0/0(0%) 416 (26%) 10 (0%) / 17 (1%) | 0 (0%) /433 (27%)
0/0/0 (0%) 14 (1%) / 0 (0%) / 0 (0%) 5(0%) /14 (1%)
0/0/0(0%) 304 (19%) 1 0 (0%) / 4 (0%) 3 (0%) /310 (19%)
UNet 0/0/0 (0%) 256 (16%) 1 1 (0%) / 2 (0%) 3 (0%) / 261 (16%)
0/0/0(0%) 263 (16%) /0 (0%) /8 (1%) | 3 (0%) /274 (17%)
0/0/0(0%) 416 (26%) 10 (0%) / 17 (1%) | 96 (6%) / 44 (3%)
D 3 Rolling ball Initial state True for 390ms later VAE UNet
D.3.1 Further evaluation and results ® . ° °
Result images of the predictions for the rolling ball are |
shown below on figure 32. For this simpler physics prob- | ‘:
. . . Pix2Pix DDPM SD(w.CA) SD
lem, there are only two variable parameters in the simula-
tion: the ground slope and the position of the “start ball”
on the image. Of course, predictions are also expected from (] R ([] o

the Al networks for any given time interval. Visually, the
same advantages and disadvantages as with the bouncing
ball can be recognized for the analysed Al algorithms (see
section D.2.1). Here too, the DDPM network creates a 64px
image, which is then scaled up to 256px. That is because
the network trains better with the 64px images and delivers
more “stable” results. The up-scaling explains the blurri-
ness of the diffusion image.

In the table 13, the average results of several runs for the
investigated Al networks for the rolling ball are shown.

The first noticeable point in the results is that the autoen-
coders provide evaluable predictions for the rolling case,
even though they remain the most unstable method. In fact,
the error images drop to around 3% for the position and re-
garding the ball angle and roundness a maximum of 34%
invalid images are generated. Therefore, the results of this
model structure can be discussed below. Otherwise it can
be seen that the errors for the position are smaller com-
pared to the bouncing case. This is especially evident for
the Y-coordinate, where a significant reduction of the error

Figure 32. Predictions of the generative Al compared to the
physics simulation for the rolling ball

can be seen, as the ball here “only” rolls along the ground
surface and no longer moves in the Y-direction. The third
physical error measure, which describes whether the ball is
lying on the ground surface, is approximately the same for
all AI methods, ranging between 97-99%. Only the autoen-
coders have difficulties to represent the ball rolling down on
the ground. The ball roundness is mapped similarly to the
bouncing ball, although it is much better with the UNet. Fi-
nally, the ball angle is represented about 2° worse by each
algorithm, except for the stable diffusion models which are
improving by approx. 2-4°. A few special features of the
analysed Al approaches and differences compared to the
bouncing ball are listed below.

Table 13. Prediction results for the Pix2Pix, UNet, autoencoder and diffusion networks for the rolling ball

Model Metric Mean Standard Error Number of Position to Distance to
deviation balls start ball ground
0/>1/Error Ahead / Error Error
Position X 4.26 8.36 1%
Position Y 1.61 3.31 1%
Pix2Pix Rotation 20.9 35.2 13% 1% 1 0% 1 0% 0% /1% 2%
Roundness 0.56 0.13 3%
Ground slope 0 0 0%
Position X 3.69 8.49 1%
Position Y 1.4 3.63 1%
UNet Rotation 16.1 32.7 11% 3% /0% /0% 0% /3% 3%
Roundness 0.53 0.15 4%
Ground slope 0 0 0%
Position X 5.54 16.2 3%
Position Y 2.44 6.26 3%
VAE Rotation 21.5 36.0 34% 3% /0% /0% 1% /3% 25%
Roundness 0.70 0.20 25%
Ground slope 1.10 0.33 0%
Position X 4.57 9.47 2%
Position Y 2.10 3.80 2%
convAE Rotation 21.4 38.2 20% 2% /0% 1 0% 0% /2% 12%
Roundness 0.65 0.21 12%
Ground slope 1.11 0.32 0%
Position X 7.38 8.56 1%
Position Y 2.34 3.39 1%
DDPM Rotation 34.2 38.6 10% 0% /0% /1% 3%/ 1% 3%
Roundness 0.74 0.16 6%
Ground slope 0 0.05 1%
Position X 24.1 332 1%
Position Y 7.65 11.6 1%
SD(w.CA) Rotation 59.1 52.1 12% 1% /0% 1 0% 3%/ 1% 2%
Roundness 0.55 0.13 2%
Ground slope 1.06 0.39 0%
Position X 7.36 14.7 0%
Position Y 2.57 5.32 0%
SD Rotation 29.9 40.4 4% 0% / 0% / 0% 1% 1 0% 1%
Roundness 0.53 0.11 1%
Ground slope 0.02 0.13 0%

Pix2Pix (GAN architecture):

* Significant reduction of “’error images” created by the net-

work that cannot be analysed regarding all error criteria

except for the ball rotation. Here, the ball angle is still

not recognisable for 13% of the images.

Slight increase in the rotation error but strong increase

in the standard deviation compared to the bouncing case.

This is the error measure that is most poorly mapped by

the Pix2Pix model.

With 99% reliability, exactly one ball is represented on

the predictions of the Al network (6% improvement over

the bouncing case). Similarly, in 99% of cases, the target

ball is placed behind the start ball in the X-direction (7%

improvement).

Correlations between error and simulation parameters:

— Position errors in both directions (X and Y) increase
the most with increasing ground slope, followed by a

larger time interval. Here, the X and Y errors show the
same dependencies on the physics simulation settings.

— Ball angle deteriorates with greater ground inclination
and when the time interval between the start and target
image increases.

— For the roundness error, unlike the bouncing case, there
is a slight dependence on the starting position of the
ball: the further the ball of the input image has moved
along the ground surface, the less round the ball is rep-
resented.

UNet:
¢ The same insights and improvements apply to the UNet

as to the Pix2Pix model concerning the position and rota-
tion of the ball, the number of balls and the placement in
X-direction of the target ball behind the input ball.

With this approach, the error images have decreased the

most compared to the bouncing case: the largest reduc-
tion of non-analysable images from 35% to 4% is ob-
served for the ball roundness.

* The roundness, which is worse with the bouncing ball,
achieves the best error measure for the rolling case.

¢ Overall, the UNet provides the best results for the rolling
ball, slightly ahead of the Pix2Pix algorithm. However,
the background of the predicted images (ground and sky)
remains blurred, so that the GAN performs better in terms
of overall appearance.

 Correlations between error and simulation parameters:

— Position errors in both directions increase as the time
interval increases; there is a significant dependence
here. There is also a smaller correlation with the in-
creasing ground slope, but it is weaker.

— For ball rotation, the time interval is more dominant
compared to the GAN, followed by the ground slope.
As the parameters increase, the inaccuracy in the pre-
diction of the ball angle also increases.

— For the roundness error, the same dependence as for
the bouncing case is observed: a larger time interval
between input and target images results in a poorer ball
representation.

Diffusion: Even in the rolling case, the best results for the
DDPM model were obtained with 64px images, explaining
the blurriness of the predictions due to up-scaling.

* Like the bouncing ball, the error criteria of the diffusion
method are worse than for GAN and UNet. Here, stable
diffusion with cross-attention delivers the worst results,
with the network performing two or three times worse
than the other diffusion methods, depending on the crite-
rion. The DDPM and SD approaches differ only slightly
in the results, with the SD model demonstrating greater
stability with a very low error rate and a better represen-
tation of the ball roundness. Compared to the bouncing
case, the position error in the Y-direction is mainly re-
duced, as with the other algorithms, while the other error
metrics remain nearly identical.

* Both the ball position (in both directions) and the angle
are represented with about twice the inaccuracy compared
to Pix2Pix and UNet for the DDPM and the SD model.
The roundness is about 35% worse.

* Regarding the mapping of the ground slope, the same is
observed as for the bouncing case: very few error images
and a small standard deviation around the mean value of 0
are present for the DDPM, while the UNet and the GAN
architecture draw the ground almost “perfectly”’. The sta-
ble diffusion approaches even show a mean error greater
than zero.

* With a 99% reliability going to almost 100% for the SD,
exactly one ball is shown on the predictions of the diffu-
sion networks and the few remaining predictions are not

evaluable. Here, diffusion performs best, as about 1% of
the Pix2Pix and 3% of the UNet predictions do not con-
tain a ball.

* Regarding the correct rolling of the ball on the ground sur-
face, 3% of predictions represent the target ball ahead of
the input ball along the X-direction, which is physically
impossible. Here, both other methods discussed above
perform slightly better with almost 0% target balls ahead.
Howeyver, the diffusion network, like the Pix2Pix and the
UNet, correctly depicts the ball on the ground surface in
97 to 99% of cases.

Overall the SD model shows the best results concerning
the three criteria expected to verify the physical correct-
ness.

* Correlation between error and simulation parameters:

— Position error in the X direction most increases with a
larger time interval. There is also a smaller correlation
with the increasing ground slope.

— Position error in the Y direction increases the most with
increasing ground slope, followed by a larger time in-
terval.

Concerning the position errors along both axes the
DDPM algorithm shows the strongest dependencies.

— Ball angle deteriorates the most when the time interval
between the start and finish images increases. There
is also a slightly weaker correlation with the ground
slope.

— No correlations are present for the roundness error.

Autoencoder: For the rolling ball, the two examined au-
toencoder approaches generate evaluable results. With a
maximum of 34% invalid images for ball angle predic-
tions and an error rate of 3% for the position, the quality
of the predictions is significantly improved. Additionally,
the average error metrics are close to those of the Pix2Pix
model and even slightly better than the diffusion networks.
Nonetheless, autoencoders remain the most unstable struc-
ture for modeling the ball problem, as they generate the
highest number of non-evaluable images. The following
observations can be made regarding the VAE and convAE
approaches:

* The convAE network generally provides slightly better
results than the VAE. The error rates of convAE are a bit
lower, as well as reduced average errors and standard de-
viations. However, the mapping of the ground and the
representation of the ball angle are nearly identical be-
tween the two methods.

* As with the other models, the ball’s position is repre-
sented less accurately along the X-axis compared to the
Y-direction for the autoencoders.

* The ball rotation is learned as effectively as with the
Pix2Pix approach, but the error rate increases by 50% to
more than double in the case of the VAE algorithm.

* A notable observation is that the ball’s roundness is rep-
resented worse compared to all other approaches exam-
ined, with significantly more invalid images. Similarly,
the ground slope is learned less accurately by both mod-
els. With the SDw.CA method, the autoencoders are the
only models showing a mean error greater than zero.

* Regarding physical correctness, these models generate
the highest number of images without any ball present
(3%). Additionally, in 12% (convAE) and 25% (VAE)
of the cases, the ball is not depicted on the ground sur-
face, although this should always be the case for a rolling
ball on an inclined surface. This error criterion stands out
most significantly compared to the other models, where
only 1 to 3% of the images show the ball not in contact
with the ground.

» Correlation between error and simulation parameters:

— Position errors in both directions increase the most as
the time interval increases. A slight dependency can
be observed to the ground slope, which generates more
inaccuracy when getting greater (more pronounced for
the Y-direction).

— Concerning the ball rotation the correctness of the
model is worser when the time interval between start
and target images increases. There is also a slightly
weaker correlation with the ground slope.

— For the roundness error, a correlation to the position
of the ball on the image can be observed. The further
the ball of the input image has moved along the ground
surface, the less round it is depicted. This is the only
model that shows a dependency between the roundness
error and this simulation parameter.

In table 14 the detailed results of different training and
evaluations are visible for each of the three analysed AI ap-
proaches. In the overview tables already shown in this pa-
per, the mean values of all runs of one method are shown
for each error criterion.

D.3.2 Typical error patterns

In this section, typical incorrect predictions of the analysed
networks for the rolling ball are presented to illustrate the
above analysis and the error rate of the networks. The visi-
ble errors or inaccuracies are described in the caption of the
respective figures.

Finally, the evaluation of the rolling case can be con-
cluded with a brief look at the physics equations. As already
indicated in the main part of this paper, the largest errors
can be traced back to the parts of the equation that contain
a double derivative. The prediction of the x-coordinate and
the ball angle are the most error-prone and also occur in the
equations with = and 1) double derivatives. In the Y direc-
tion, the significant improvement in the position prediction

DDPM DDPM UNet SD(w.CA)

000. ,\

Figure 33. Several or no balls are present in the predictions (left:
several balls only occur with the diffusion network; right: no ball
present)

Pix2Pix convAE

¢
. L4]

Figure 34. Typical artefacts that occur for different trained model

UNet Pix2Pix SD(w.CA) SD

Figure 35. Imperfect color separation between both ball halves
(occurs mostly for the Pix2Pix model)

Input image DDPM Input image SD(w.CA)

Figure 36. Position of the target ball ahead of the start ball along
the X-axis (mostly for diffusion). The predicted ball is slightly to
the left of the starting ball position on the generated samples.

convAE UNet Pix2Pix SD
2 2 « ®
~ ®
® ®

Figure 37. Errors concerning the ball position and rotation (1st
line: true images; 2nd line: corresponding network prediction)

can be explained by the fact that there is no movement along
this axis and therefore the complex calculation parts of the
bouncing case are omitted.

Table 14. Detailed results of each training run for the Pix2Pix and UNet networks where multiple runs were carried out to get more
representative mean values for the rolling ball

Rotation Position X | Position Y | Position Roundness
Mean / Std / Err Mean / Std | Mean/ Std Error Mean / Std / Err
21.7/36.0/199 (11%) | 4.17/8.28 | 1.58/3.24 | 16 (1%) | 0.60/0.14/34 2%)
24.4/36.7/38521%) | 435/8.14 | 1.67/3.32 | 26 (1%) | 0.62/0.15/85 (5%)
Pix2Pix | 21.8/35.4/377 (21%) | 492/9.36 | 1.91/3.82 | 21 (1%) | 0.57/0.14/ 63 (4%)
16.2/32.9/121 (7%) 3.80/843 | 1.38/3.26 3 (0%) 0.50/0.11/16 (1%)
20.2/34.8/98 (5%) 4.07/7.60 | 1.49/292 | 14(1%) | 0.51/0.11/16 (1%)
16.8/33.5/176 (10%) | 3.69/8.33 | 1.30/3.18 | 39 2%) | 0.52/0.15/62 (3%)
UNet 15.7/32.1/194 (11%) | 3.59/8.35 | 1.33/3.26 | 40 2%) | 0.51/0.14 /66 (4%)
16.2/33.6/187 (10%) | 3.77/8.69 | 1.40/3.46 | 23 (1%) | 0.53/0.15/62 (3%)
15.6/31.5/203 (11%) | 3.71/8.59 | 1.57/4.61 9 (1%) 0.55/0.15/ 68 (4%)
Ground slope Number of balls Position to start ball | Distance to ground
Mean / Std / Err 0 / >1 / Error Ahead / Error Error
0/0/0(0%) 16 (1%) /0 (0%) / 0 (0%) 5(0%) /16 (1%) 19 (1%)
0/0/0(0%) 13 (1%) /0 (0%) / 0 (0%) 8 (0%) 126 (1%) 34 2%)
Pix2Pix 0/0/0(0%) 21 (1%) /0 (0%) / 0 (0%) 0(0%) /21 (1%) 35 2%)
0/0/0(0%) 36 2%) /0 (0%) /2 (0%) 0(0%) /38 2%) 38 2%)
0/0/0(0%) 14 (1%) /0 (0%) / 0 (0%) 2 (0%) /14 (1%) 14 (1%)
0/0/11 (1%) 37 2%) 11 (0%) /1 (0%) 0(0%) /39 2%) 40 (2%)
UNet 0/0/0(0%) 36 2%) /0 (0%) / 4 (0%) 0(0%) /40 2%) 40 (2%)
0/0/1(0%) 44 2%) 10 (0%) / 8 (0%) 0(0%) /52 (3%) 52 (3%)
0/0/0(0%) 57 3%) /0 (0%) ! 7 (0%) 0 (0%) / 64 (4%) 64 (4%)

PhysicsGen

DATASET LINK

E. Datacard

This assembled dataset comprises three distinct physical-based
image-to-image translation tasks, totaling 300,000 samples across
diverse domains. The datasets include:

Urban Sound Propagation: Expanding on research into urban sound
propagation, this dataset contains 25,000 data points extracted from
10 different cities. Each city is represented by 2,500 locations within a
500m x 500m area, utilizing OpenStreetMap imagery where buildings
are marked with black pixels and open spaces with white pixels.

Lens Distortion Correction: Derived from the CelebA dataset, this
dataset focuses on correcting lens distortion in facial images.

Dynamics of rolling and bouncing movements: This dataset captures
the physical dynamics of rolling and bouncing balls, intended for

studies in motion prediction.

Each dataset facilitates the development of generative models by
providing high-resolution (256x256) imagery and diverse scenarios.

DATA CARD AUTHOR(S)

https://doi.org/10.5281/zenodo.10609793

Anonymous for Blind Review

Authorship

Publishers

PUBLISHING
ORGANIZATION(S)

Anonymous for Blind
Review

Funding Sources

INSTITUTION(S)

Anonymous for Blind
Review

INDUSTRY TYPE(S)

Anonymous for Blind Review

FUNDING OR GRANT SUMMARY(IES)

Anonymous for Blind Review

CONTACT DETAIL(S)

Anonymous for Blind Review

Sound Propagation - Dataset Overview

DATA SUBJECT(S) DATASET SNAPSHOT
Data about natural S o BEraeEn ~5 GB
phenomena

Number of Instances ~100000
Data about places and

. Training 19908 x 4
objects
Evaluation 3732 x4
Test 1244 x 4

Additional Notes: The dataset is segmented
into four distinct subsets, each tailored to
explore specific aspects of sound
propagation in urban environments:
Baseline, Reflection, Diffraction, and
Combined.

Dataset Version and Maintenance

MAINTENANCE STATUS VERSION DETAILS

Current Version: 2.0
Regularly Updated

(New versions of the dataset Last Updated: 06/2024

have been or will continue to

) Release Date: 06/2024
be made available.)

CONTENT DESCRIPTION

A data point in this dataset consists of two
main components: an urban layout image
from OpenStreetMap and a corresponding
sound distribution map. The urban layout
image is a 500m x 500m area depiction
where buildings are marked in black and
open spaces in white. The sound distribution
map generated using NoiseModelling v4.0,
illustrates the sound dynamics within that
urban environment at resolutions of
512x512 or 256x256.

The dataset comprises four subsets: Baseline
for basic sound behavior, Reflection
examining sound wave interactions with
surfaces, Diffraction focusing on sound
navigating around objects, and Combined
which merges reflection, diffraction and
changing environmental factors like
temperature and humidity.

MAINTENANCE PLAN

Feedback:
Anonymous for Blind Review

Sound Propagation - Example of Data Points

PRIMARY DATA
MODALITY

Multimodal

- Image Data
- Geospatial Data
- Tabular Data

SAMPLING OF DATA

DATA FIELDS

Field Name

lat

long

db

soundmap

soundmap_512

osm

temperature

humidity

yaw

sample_id

Field Value

float

float

Object

string

string

string

float

float

float

int

Description

Latitude of the sound
measurement location.

Longitude of the sound
measurement location.

Key-value pairs of sound
levels in decibels for a
given frequency
(Ilwd{fgz}).

Path to 256x256
resolution sound
distribution image.

Path to 512x512
resolution sound
distribution image.

Path to Open Street Map
image showing urban
layout.

Temperature (°C) at the
location.

Humidity (%) at the
location.

Orientation of the noise
source. Can be empty.

Unique identifier for the
data point.

TYPICAL DATA POINT EXAMPLE OF DATA POINT

Below is an example of an OSM and Simulated Sound Propagation pair:

oA
"lat": 48.030229082138526,

"long": 11.367773397906852, /\ ; I
"db": {"1wd508": 69}, 'Y
"soundmap" : ,,"\ +

"./soundmaps/256/0_LEQ_256.png",

p
"soundmap_512": " ‘
"./soundmaps/512/0_LEQ_512.png", w
"osm":
"./buildings/osm_23747.png",
4

"temperature": 12,
"humidity": 35,

" ", \

}zgrvr\:pleﬁfge, "23747" ‘ % ‘\ “ '
AY

Y .

»

%
'

7

—

Simulated Sound Propagation:

Sound Propagation - Provenance

Collection

METHOD(S) USED

API

Physical Simulation
Framework

METHODOLOGY DETAIL(S)

Overpass API

Source: The Overpass APl is a read-only API that serves up
custom selected parts of the OSM map data. It acts as a
database over the web: the client sends a query to the API
and gets back the data set that corresponds to the query.

Platform: https://overpass-api.de/

Is this source considered sensitive or high-risk? [Yes / No]
Dates of Collection: [10 2023 - 12 2024]

Primary modality of collected data:

Geospatial Data

NoiseModelling v4.0

Source: An advanced simulation tool engineered for
accurate modeling of sound dynamics within urban

environments.

Platform: https://github.com/Universite-Gustave-
Eiffel/NoiseModelling

Is this source considered sensitive or high-risk? [Yes / No]
Dates of Collection: [10 2023 - 12 2024]

Primary modality of collected data:
Geospatial Data

SOURCE DESCRIPTION(S)

OSM Buildings: This source
provides images from Open
Street Map (OSM) that depict
urban layouts, specifically
focusing on buildings within
cities. In these images, black
pixels represent buildings, and
white pixels indicate open
spaces.

Sound Propagation: This
component of the dataset
involves simulated sound
distribution images around
urban centers, where the noise
source is placed at the center.

Collection Criteria

DATA SELECTION

Location Sampling: The locations
are randomly sampled across 10
cities/areas:

["Hamburg", "Hannover",
"Augsburg", "Bonn", "Muenchen",
"Schwerin", "Berlin", "Paris",
"Stuttgart", "Aachen"]

DATA INCLUSION

Enough Obstacles: At least 10 Buildings within a circle
r=200m around the sound source.

No Obstacle to close: No Building within a r=50m circle
around the sound source.

Additonal Notes:

DATA EXCLUSION

Additional Notes: If the Data
Inclusion criteria is not met,
the data is excluded.

No additional exclusion criteria
are introduced.

Lens Distortion - Dataset Overview

DATA SUBJECT(S) DATASET SNAPSHOT CONTENT DESCRIPTION
Data about natural S o BEraeEn ~2 MB This dataset provides the lens parameters
phenomena corresponding to images from the CelebA
Number of Instances 100000 dataset in a structured CSV format. Intended
-~ for use in computer vision research focusing
REue 40000 x 2 on the effects of different lens
Evaluation 7500 x 2 configurations on image characteristics, the
dataset organizes parameters across
Test 2500 x 2 training, evaluation, and testing subsets. It

includes scripts available on our GitHub
repository for researchers to reproduce the

Additional Notes: The dataset is segmented image. samples within the bounds of
into two subsets for p1 and p2. copyright law.

Dataset Version and Maintenance

MAINTENANCE STATUS VERSION DETAILS MAINTENANCE PLAN
Current Version: 1.0 Feedback:
Regularly Updated Anonymous for Blind Review

(New versions of the dataset Last Updated: 06/2024

have been or will continue to

) Release Date: 06/2024
be made available.)

Lens Distortion - Example of Data Points

PRIMARY DATA SAMPLING OF DATA DATA FIELDS

MODALITY

POINTS

Tabular Data

Field Name

label_path

fx

k1, k2, k3

p1, p2

cX

distortion_path

TYPICAL DATA POINT

{
"label path":
"labels_50k/label_0.jpg",

"fx": 200,

"k1": 0.9,

"k2": 0.0,

"k3": 0.9,

"pl": 0.13393540720902974,
"p2": 0.0,

"cx": 128,

"distortion_path": "true/y 0.jpg"

3o

Field Value

string

float

float

float

float

string

Description

Path to the label file
associated with the image
sample.

The focal length of the
camera lens used to
capture the image.

Coefficients representing
the radial distortion
introduced by the lens.

Coefficients representing
the tangential distortion
of the lens.

The x-coordinate of the
principal point of the
image, which is the point
on the image sensor
where the lens is focused.

Path to the file containing
distortion image.

Lens Distortion - Provenance

Collection

METHOD(S) USED

Python Package

METHODOLOGY DETAIL(S) SOURCE DESCRIPTION(S)
OSM Buildings: This source
OpenCV provides images from Open
Source: OpenCV (Open Source Computer Vision Library) is Street Map (OSM) that depict
an open-source computer vision and machine learning urban layouts, specifically
software library. The library provides a common focusing on buildings within
infrastructure for computer vision applications and cities. In these images, black
accelerates the use of machine perception in commercial ~ Pixels represent buildings, and
products. It contains more than 2500 optimized white pixels indicate open
algorithms, including a comprehensive set of both classic spaces.
and state-of-the-art computer vision and machine learning
techniques.

Platform: https://opencv.org/

Is this source considered sensitive or high-risk? [Yes / No]
Dates of Collection: Not applicable (continuously updated)

Primary modality of collected data:
Image Processing Data

Dynamics of rolling and bouncing movements - Dataset Overview

DATA SUBIJECT(S) DATASET SNAPSHOT

Data about natural
phenomena

Size of Dataset
Number of Instances
Rolling - Training
Rolling - Evaluation
Rolling - Test
Bouncing - Training
Bouncing - Evaluation

Bouncing - Test

Additional Notes: The dataset is segmented
into two distinct subsets, for a rolling ball

and a bouncing ball.

Dataset Version and Maintenance

MAINTENANCE STATUS VERSION DETAILS

Current Version: 1.0
Regularly Updated

(New versions of the dataset Last Updated: 06/2024

have been or will continue to

) Release Date: 06/2024
be made available.)

~7 GB
~75,000
27840
50

1800
44835
58

1600

CONTENT DESCRIPTION

The third physics problem investigated in
this publication is the movement of a rolling
or bouncing ball. The aim here is to evaluate
the ability of generative Al to map kinematic
movements of physics: to investigate how
well the networks can predict the position
and rotation of the ball along an inclined
surface for a defined time interval after the
input image.

MAINTENANCE PLAN

Feedback:
Anonymous for Blind Review

Dynamics of rolling and bouncing movements - Example of Data Points

PRIMARY DATA SAMPLING OF DATA DATA FIELDS

MODALITY POINTS

Multimodal

- Image Data Field Name

- Tabular Data
ImgName
StartHeight
GroundIncli
InputTime
TargetTime

Field Value

float

int

int

int

int

Description

The filename of the image
pair capturing the rolling
ball at a specific instance.

The initial height from
which the ball starts.

The angle of incline of the
ground on which the ball
is rolling, expressed in
degrees.

The simulation time when
the ball begins its
movement.

The timestamp at which
the prediction should be
made, indicating when
the model estimates the
ball will reach a
predetermined target
point or condition.

TYPICAL DATA POINT

A
"ImgName": "17",
"StartHeight": o,
"GroundIncli": -3,
"InputTime": 99,
"TargetTime": 5910
s

EXAMPLE OF DATA POINT

Below is an example of an OSM and Simulated Sound Propagation pair:

Dynamics of rolling and bouncing movements - Provenance

Collection

METHOD(S) USED

Physical Simulation
Framework

METHODOLOGY DETAIL(S)

Pymunk

Source: Pymunk is a physics simulation library based on
Chipmunk, which provides a fast, lightweight 2D rigid body
physics library for Python. It enables the creation and
manipulation of physics simulations in a simple manner,
offering precise control over elements like mass, gravity,
and friction.

Platform: http://www.pymunk.org/

Is this source considered sensitive or high-risk? [Yes /No]

Primary modality of collected data:

Physical Simulation Data

SOURCE DESCRIPTION(S)

Motivations & Intentions

Motivations

PURPOSE(S)

Research

Intended Use

DATASET USE(S)

Safe for research use

DOMAIN(S) OF APPLICATION

‘Generative Models’, “1-step Physic

Simulation’, "Sound Propagation’,

‘Machine Learning”

RESEARCH AND PROBLEM SPACE(S)

The dataset targets three key physical
phenomena: urban noise propagation,
lens distortion, and the dynamics of rolling
and bouncing balls. It is crafted to develop
models capable of:

- Urban Noise Propagation: Predicting
sound distribution around urban
buildings.

- Lens Distortion: Correcting optical
distortions in photographs.

- Dynamics of rolling and bouncing
movements: Simulating motion
trajectories under various conditions.

@O0

MOTIVATING FACTOR(S)

The release of this dataset is driven by the
potential of generative learning models to
understand and simulate complex physical
phenomena.

Our dataset of 300,000 image-pairs supports
research into three specific physical simulation
tasks: urban sound propagation, lens distortion
correction, and the dynamics of rolling and
bouncing balls. By providing these data, along
with baseline evaluations, we aim to address
several fundamental research questions:

- Learning Capability: Can generative models
accurately learn and replicate complex
physical relationships from input-output
image pairs?

- Efficiency Gains: What computational
speedups can be achieved by substituting
traditional, differential equation-based
simulations with generative model
predictions?

The Data Cards Playbook A/ by Google Research is licensed under a Creative

Commons Attribution-ShareAlike 4.0 International License.

You are free to share and adapt this work under

the appropriate license terms /.

