
PyTorchGeoNodes: Enabling Differentiable Shape Programs for 3D Shape
Reconstruction – Supplementary

Sinisa Stekovic1,2 Arslan Artykov1 Stefan Ainetter2 Mattia D’Urso2 Friedrich Fraundorfer2
1 LIGM, École des Ponts et Chaussees, IP Paris, CNRS, France

2 Inst. for Computer Graphics and Vision, Graz Univ. of Technology, Austria

Project page: vevenom.github.io/pytorchgeonodes

We provide additional results and details regarding eval-
uations of our search algorithm and other baselines in Sec-
tion 1, and provide more details regarding our PyTorch-
GeoNodes framework in Section 2, regarding our search al-
gorithm in Section 3, regarding our integration of Gaussian
splats in Section 4 and regarding our shape program designs
in Section 5.

In addition, we provide a video showing the recon-
struction progress of our approach through genetic it-
erations for scenes of the ScanNet dataset [2], qualita-
tive results for our integration of Gaussian splats, and
a demo on shape manipulation with PyTorchGeoNodes
and Gaussian splats.

1. Additional Validations
In this section, we first provide more details regarding base-
line implementations. Then, we provide additional evalua-
tions of our genetic algorithm for the ScanNet dataset and
our synthetic dataset. Finally, we provide additional valida-
tion for our integration of Gaussian splats into our pipeline.

1.1. Additional Validation on ScanNet
Tables 2, 3 show quantitative evaluations on ScanNet. We
compare 3D shapes of our recovered program parameters to
3D shapes of ground truth program parameters using cham-
fer distance between the corresponding point clouds.

We confirm that our proposed genetic algorithm out-
performs alternative baselines. Direct inference with deep
learning from [4] struggles to deal with the domain gap and
does not generalize to partial point clouds in the ScanNet
dataset. While refinement using our PyTorchGeoNodes still
helps to improve results, in most cases, the reconstructed
parameters and 3D shapes are not representative of the in-
put scene. While our implementation of coordinate descent
performs better, it has similar drawbacks, and fails to pro-
vide reasonable reconstruction especially in cases of bad
random initialisation. In contrast, we observed substan-
tial improvements when relying on our genetic algorithm

Figure 1. Qualitative result on cabinet. Our search algorithm is
able to recover correct parameters for ’Cabinet’ program that in-
cludes different number of shelves, existence of doors, size of cab-
inet, and legs parameters.

to recover shape parameters. We observe very good perfor-
mance, except in exceptions such as in the case of sofa legs
where our objective function is not well-tailored to handle
such small details in the scene.

Qualitative results in Figures 6, 5, 7 show additional ex-
amples where our approach is able to reconstruct a vari-
ety of program parameters that are geometrically consistent
with the input scene. In addition, we provide qualitative re-
sult for ’Cabinet’ class in Figure 1 to show our approach
can be extended to other categories. We note that we were
not able to provide meaningful quantitative results for this
category on ScanNet: This is because the large majority of
cabinets have drawers, therefore the back of cabinets are
not visible and we cannot estimate the number of dividing
boards based on geometric objective terms in the presence
of drawers. In the case of bookshelves, objects on shelves
induce noise in instance segmentation. Therefore, the ob-
jective term does not handle such settings well. We note
these are general limitations for reconstructing cabinets and
are present also for state-of-the-art methods [1].

We show in Figure 2 that our reconstructions can also be
used for segmenting semantic object parts in partial point
clouds. In this application, graph of PyTorchGeoNodes di-
rectly assigns points in the point cloud to base primitives in
our procedural graphs based on simple chamfer distance.

1

https://vevenom.github.io/pytorchgeonodes/


Figure 2. Segmenting semantic parts in partial point clouds of
objects based on our reconstructions.

Initialisation only Final

SSIM (↑) 0.96 0.99
PSNR (↑) 31.1 36.74
LPIPS (↓) 0.06 0.03

Table 1. Quantitative results on standard appearance metrics of
our Gaussian splats integration into PyTorchGeoNodes.

1.2. Validation on Synthetic Data
In addition, we evaluate our search algorithm on synthetic
scenes to evaluate performance of our algorithm when there
is no presence of occlusions and noise in the data. We
generate 300 synthetic scenes that contain complete point
clouds of objects corresponding to target parameters. In this
experiment, we simply use chamfer distance loss as we do
not need to handle occlusions in the scene. We show quan-
titative results in Tables 4, 5 for ’Cabinet’ and ’Chair’. We
omit ’Sofa’, and ’Table’ categories from the supplementary
where we observed similar behavior. Similarly to our exper-
iments on ScanNet, we confirm that our genetic algorithm
performs extremely well, and we demonstrate advantage of
adding gradient descent based on our PyTorchGeoNodes.
However, we also observe significant boost in performance
compared to our ScanNet experiments. This is a clear indi-
cator that introducing novel objective terms into the search
could further improve the reconstruction results.

1.3. Validation of Gaussian Splats Integration
In Table 1 we show quantitative evaluations of our Gaus-
sian splats integration into PyTorchGeoNodes using stan-
dard metrics and we mask pixel locations that do not be-
long to target objects. For the quantitative evaluation, we
randomly select 20 views for training and 10 for validation
per secene. We selected 10 samples among different cate-
gories for this ablation. We choose samples with masks of

Input view Our results

Figure 3. Qualitative results for our Gaussian splats integration
into PyTorchGeoNodes. We show more results in the supplemen-
tary video. We point to the legs of the chair and table. In the input
views, there are self-occlusions in case of chair, or severe occlu-
sions from other object. Our computational-graph-aware is able to
deal with such situations and we reconstruct appearance of these
parts of objects accurately.

Vanilla Gaussian splatting Our procedural Gaussians

Figure 4. Vanilla Gaussian splatting on target objects does not
perform well because of occlusions, lack of views of the target ob-
ject, and noisy observations. In contrast, our integration of Gaus-
sian splatting and PyTorchGeoNodes results in reconstructions of
much higher quality, as Gaussians are constrained by the corre-
sponding procedural model.

satisfying quality and accurate shape parameters quality for
this experiment for fair evaluation as Gaussian splatting is
very sensitive to noise, especially given that we only use 30
views per scene for optimization. We observe that already
after initialization the metrics are relatively high and the
numbers are further improved after our optimization pro-
cedure. In Figure 3 we show qualitative results, and in Fig-
ure 4 we compare our results to ’vanilla’ Gaussian splatting
that is not constrained by our procedural model.



Figure 5. Qualitative results on sofas. or each pair, the left image shows one of the input views. The right images in pairs show our
projections of recovered shape parameters. Our results are accurate, dimensions of sofa vary greatly in our validation set, yet we are able
to reconstruct these measuremenets accurately. In addition, we accurately model existence and measurements of armrests, existence and
measurements of L-extensions.

Parameter GeoCode [4] GeoCode [4] CD CD Genetic Genetic
w\o refinement w\o refinement w\o refinement

C
on

tin
uo

us
Pa

ra
m

et
er

s

Mean Absolute Difference to Ground Truth (↓)

Width 0.5 0.27 0.18 0.15 0.15 0.12
Height 0.12 0.08 0.08 0.07 0.08 0.06
Depth 0.07 0.06 0.12 0.07 0.11 0.07

Back Height 0.21 0.12 0.12 0.05 0.08 0.06
Back Depth 0.07 0.08 0.07 0.06 0.07 0.07

Back Over-Width Scale 0.36 0.35 0.39 0.34 0.39 0.38
L Depth 0.17 0.2 0.13 0.26 0.11 0.11
L Width 0.07 0.05 0.09 0.07 0.09 0.05

Arm Width 0.09 0.08 0.06 0.05 0.06 0.04
Arm Depth 0.16 0.14 0.04 0.06 0.04 0.06
Arm Height 0.19 0.23 0.23 0.17 0.18 0.14

Leg Size 0.03 0.04 0.04 0.04 0.04 0.04
Leg Height 0.06 0.06 0.04 0.03 0.04 0.03

D
is

cr
et

e
P.

Classification Accuracy (↑)

Has Back 0.4 0.4 0.77 0.96 1.0 1.0
Is L-Shaped 0.56 0.56 0.77 0.72 1.0 1.0

Flip L Around Y 0.6 0.6 0.9 0.7 1.0 1.0
Has Left Arm 0.28 0.28 0.74 0.75 0.95 0.98

Has Right Arm 0.26 0.26 0.67 0.75 0.95 0.98
Has Legs 0.46 0.46 0.37 0.47 0.46 0.46

Table 2. Quantitative results on the sofa category.



Figure 6. Qualitative results on chairs. For each pair, the left image shows one of the input views. The right images in pairs show our
projections of recovered shape parameters. They are accurate, we accurately model thickness of legs, existence position and measurements
of leg supports, existence, rotations and measurements of star-shape legs, and existence and measurements of armrests.

Parameter GeoCode [4] GeoCode [4] CD CD Genetic Genetic
w\o refinement w\o refinement w\o refinement

C
on

tin
uo

us
Pa

ra
m

et
er

s

Mean Absolute Difference to Ground Truth (↓)

Seat Width 0.24 0.08 0.06 0.03 0.06 0.03
Seat Height 0.13 0.1 0.1 0.05 0.08 0.04

Seat Thickness 0.05 0.04 0.03 0.04 0.03 0.03
Seat Depth 0.14 0.05 0.07 0.06 0.06 0.05

Backrest Scale 0.39 0.29 0.22 0.27 0.12 0.09
Back Height 0.1 0.06 0.05 0.04 0.05 0.03

Back Thickness 0.02 0.03 0.01 0.02 0.01 0.01
Backrest Offset Scale 0.33 0.34 0.32 0.3 0.29 0.26

Legs Size 0.03 0.02 0.03 0.02 0.03 0.01
Bottom Size Scale 0.37 0.37 0.15 0.38 0.24 0.1
Bottom Thickness 0.02 0.02 0.03 0.01 0.02 0.02
Middle Offset 2 0.11 0.12 0.13 0.14 0.14 0.05
Middle Offset 1 0.13 0.11 0.15 0.14 0.15 0.05

Middle Support Thickness 0.01 0.01 0.01 0.01 0.01 0.01
Star Rotation 0.36 0.36 0.19 0.42 0.38 0.1
Arm Height 0.06 0.06 0.06 0.05 0.06 0.03

Arm Depth Scale 0.11 0.11 0.1 0.09 0.1 0.05
Arm Width 0.03 0.03 0.02 0.02 0.02 0.03

Arm Thickness 0.01 0.01 0.01 0.01 0.01 0.02

D
is

cr
et

e
P.

Classification Accuracy (↑)

Has Back 0.61 0.6 0.67 0.67 1.0 1.0
Legs Type 0.63 0.62 0.89 0.96 0.94 0.94

Has Middle Support 0.53 0.55 0.91 0.73 0.91 0.91
Has Arms 0.44 0.44 0.56 0.69 0.92 0.94

Table 3. Quantitative results on the chair category.



Figure 7. Qualitative results on tables. or each pair, the left image shows one of the input views. The right images in pairs show our
projections of recovered shape parameters. Our recovered shape parameters are accurate, dimensions of table vary greatly in our validation
set, yet we are able to reconstruct these measurements accurately. In addition, we accurately model existence and position of middle
support, existence and measurements of internal cabinet, and shape of the top board.

Parameter GeoCode [4] GeoCode [4] CD CD Genetic Genetic
w\o refinement w\o refinement w\o refinement

C
on

tin
uo

us
Pa

ra
m

et
er

s Mean Absolute Difference to Ground Truth (↓)

Height 0.05 0.0 0.05 0.01 0.02 0.0
Width 0.04 0.01 0.05 0.01 0.02 0.0
Depth 0.02 0.02 0.05 0.0 0.03 0.0

Board Thickness 0.0 0.0 0.02 0.0 0.02 0.0
Dividing Board Thickness 0.0 0.0 0.01 0.0 0.01 0.0

Leg Width 0.01 0.0 0.02 0.01 0.02 0.0
Leg Height 0.01 0.01 0.02 0.02 0.02 0.0
Leg Depth 0.01 0.01 0.02 0.02 0.02 0.01

D
is

cr
et

e
Pa

ra
m

et
er

s

Classification Accuracy (↑)

Has Drawers 1.0 1.0 0.87 0.83 0.97 0.97
Number of Dividing Boards 1.0 1.0 1.0 1.0 1.0 1.0

Has Back 1.0 1.0 0.67 0.67 1.0 0.92
Has Legs 1.0 1.0 1.0 0.57 0.97 1.0

Has Drawers 1.0 1.0 0.87 0.83 0.97 0.97
Number of Dividing Boards 1.0 1.0 1.0 1.0 1.0 1.0

Has Back 1.0 1.0 0.67 0.67 1.0 1.0
Has Legs 1.0 1.0 1.0 0.57 0.97 1.0

Table 4. Quantitative results on our synthetic dataset for the cabinet category. GeoCode [4] was overfitted to the data from the same
distribution and therefore it reaches very high performance but it still benefits from additional refinement enabled by our PyTorchGeoNodes.
Our genetic algorithm outperforms coordinate descent and performs comparably to the GeoCode baseline.



Parameter GeoCode [4] GeoCode [4] CD CD Genetic Genetic
w\o refinement w\o refinement w\o refinement

C
on

tin
uo

us
Pa

ra
m

et
er

s

Mean Absolute Difference to Ground Truth (↓)

Seat Width 0.04 0.0 0.06 0.01 0.05 0.0
Seat Height 0.01 0.0 0.06 0.02 0.03 0.0

Seat Thickness 0.0 0.0 0.04 0.0 0.04 0.0
Seat Depth 0.01 0.01 0.05 0.01 0.04 0.01

Backrest Scale 0.03 0.28 0.18 0.12 0.19 0.03
Back Height 0.01 0.03 0.05 0.03 0.04 0.0

Back Thickness 0.0 0.01 0.02 0.0 0.02 0.0
Backrest Offset Scale 0.04 0.11 0.16 0.16 0.14 0.07

Legs Size 0.01 0.01 0.02 0.0 0.02 0.0
Bottom Size Scale 0.13 0.1 0.18 0.32 0.27 0.17
Bottom Thickness 0.0 0.0 0.01 0.01 0.01 0.0
Middle Offset 2 0.06 0.05 0.08 0.12 0.1 0.05
Middle Offset 1 0.02 0.02 0.24 0.18 0.16 0.06

Middle Support Thickness 0.0 0.0 0.01 0.01 0.01 0.0
Star Rotation 0.07 0.12 0.23 0.25 0.21 0.27
Arm Height 0.0 0.0 0.03 0.01 0.03 0.0

Arm Depth Scale 0.02 0.05 0.08 0.01 0.08 0.01
Arm Width 0.0 0.01 0.02 0.0 0.02 0.0

Arm Thickness 0.0 0.0 0.01 0.01 0.01 0.0

D
is

cr
et

e
P.

Classification Accuracy (↑)

Has Back 1.0 1.0 0.9 0.93 1.0 1.0
Legs Type 1.0 1.0 1.0 1.0 1.0 1.0

Has Middle Support 1.0 1.0 0.67 0.56 0.89 1.0
Has Arms 1.0 1.0 0.93 0.97 1.0 1.0

Table 5. Quantitative results on our synthetic dataset for the chair category. GeoCode [4] was overfitted to the data from the same
distribution and therefore it reaches very high performance but it still benefits from additional refinement enabled by our PyTorchGeoNodes.
Our genetic algorithm outperforms coordinate descent and performs comparably to the GeoCode baseline.



2. PyTorchGeoNodes – Implementation Details
In this section, we provide additional details regarding the
implementation of our PyTorchGeoNodes framework.

2.1. Computational Graph
Shape programs in PyTorchGeoNodes are represented as
computational graphs. Therefore, for every functionality in
the main paper, PyTorchGeoNodes implements a class with
the corresponding functionality.

These functionalities are implemented in the form of
nodes and edges:
• Nodes in our graphs are child classes of PyTorch base

class torch.nn.Module to enable seamless integra-
tion into PyTorch code. Every node in the graph is as-
sociated with a unique id. When performing a forward
pass, a node can take either default constants or outputs of
other nodes as input. Therefore, nodes can contain multi-
ple input and output sockets to enable flow of information
through the computational graph.

• Edge is a data structure with four attributes. ’Input node’
and ’Output node’ define the identifiers of individual
nodes that are connected by the edge. ’Input socket’ and
’Output socket’ define the corresponding sockets. There-
fore, a node can be associated with several input and out-
put edges, and an edge is always shared between exactly
two nodes.
During a forward pass, we use a hash map that keeps

track of the output sockets of individual nodes such that they
can be easily accessed by nodes by simply querying the cor-
rect hash. Every ’Input node’ in the graph parses named pa-
rameters, or shape parameters, and initializes the hash map
that is updated with each forward call of nodes in the graph.
Finally, we accumulate outputs of ’Output nodes’ as a list
of output geometries. Such design enables flow of gradients
as we demonstrate in Figure 8. Note that in our experiments
we only consider computational graphs that have one output
but this is not a limitation of our implementation.

2.2. Efficient Implementation
As computational graphs increase in size (in our experi-
ments, graphs can have between 100 and 200 nodes) so does
the computational time which is why we considered differ-
ent ways to improve the efficiency of PyTorchGeoNodes.

Note that, by default, computational nodes are not nec-
essarily pre-sorted in optimal order. A node could request
an input that has not been computed yet. As this would lead
to several complications and the usage of recursive calls,
which would in turn lead to computational bottlenecks, we
implement a different solution. During the generation of the
computational graph, nodes are sorted into a list using topo-
logical sort: Based on dependencies in a graph, we ensure
that a node always appears after nodes that it is dependent
on. For example, ’Input nodes’ and other nodes that do not

require any inputs will appear first, and ’Output nodes’ will
be the last nodes after sorting. Then during inference, we
can simply iterate this list, as inputs for nodes will be read-
ily available once the forward pass of the nodes is invoked.

In addition, we observed that some nodes in a graph do
not necessarily depend on any inputs. For example, instanti-
ating an initial geometric primitive does not necessarily de-
pend on any parameters. In this case, we implement caching
such that the output of such nodes does not need to be re-
computed during every forward pass.

3. Search Algorithm – Implementation Details

In this section, we discuss implementation details regarding
our search algorithm.

Discretizing continuous parameters. Our genetic al-
gorithm, as well as the coordinate descent baseline, rely
on discretization of values for continuous parameters dur-
ing the search. For a given valid range of a parameter, we
generate discrete values in linear steps of 0.2. This value is
fitting for all parameters since they are represented in me-
ters, or as aspect ratio relative to other parameters. In the
case of object rotation, we use discrete steps of size 90◦.

Search details. As discussed in the main paper,
our genetic algorithm depends on several different hyper-
parameters. Based on empirical observations from our syn-
thetic experiments, we use the following configuration:

• Total number of generations is set to 50;
• Size of initially randomly generated individuals is 500.

We take 64 best performing individuals and maintain this
population through iterations;

• At every iteration we generate 128 offsprings by ran-
domly selecting pairs of parents and then randomly se-
lecting values for each of the parameters from this pair.

• Mutation rate is set to Pm = 0.9 and linearly decayed to
0.1 through generations, and the random noise added for
continuous values is σ = 0.05.

• To make the search more efficient, we performs refine-
ment every 5, and we randomly select 20 percent of off-
springs and perform gradient descent until convergence
with Adam optimizer and learning rate 0.01.

4. Integration of Gaussian Nodes – Implemen-
tation Details

As explained in the main manuscript, we integrate Gaussian
nodes into PyTorchGeoNodes in a straight-forward way, by
adjusting the nodes that generate primitive meshes, in our
case Cubes and Cylinders, to also generate Gaussian param-
eters that are fitted to the meshes of corresponding prim-
itives. More precisely, we are inspired by findings from
SuGaR [3] in order to ensure that object mesh and Gaus-
sians remain consistent:



Figure 8. Gradient-based optimization of continuous parameters of a shape program for the sofa category. From an initial estimate
of the parameters of the object, we can perform gradient descent on the parameters based on a 3D geometric loss term. In contrast to
methods that directly optimize the reconstructed mesh, PyTorchGeoNodes allows optimization in the parameter space which has several
benefits. From the resulting shapes in this example, it is observable that individual parameters can be scaled independently targeting only
specific parts of the shape geometry while preserving the compactness of the 3D shape at the same time.

• Means are not optimized directly, we compute means ex-
plicitly from triangles of object mesh, and we use 4 means
per face in barycentric coordinate system relative to the
individual faces. Instead, we optimize offsets of vertices
of the object mesh.

• We keep Gaussians flat by frozing their thickness to 10−3,
and only optimize the remaining two scales. They are ini-
tialized to be isotropic and are set to 0.5 of maximum side
length of corresponding triangles. We optimize offsets to
these scales.

• Gaussian rotations are initialized to be aligned with the
object mesh and we only allow optimization of offset to
the in-plane rotation.

• We initialize colors from the closest points in the point
cloud of the corresponding object.

• We also optimize opacity which is initially set to 0.7 in
our experiments.

We train the parameters for 1000 iterations. We use the
Adam optimizer, and as is the case for different implemen-
tations of Gaussian splats, we observed that using differ-
ent learning rates for different parameters improves conver-
gence: for mesh vertex offset we use learning rate 10−4, for
scales offsets 5−3, for colors 10−2, and for opacity 10−2.

5. Shape Program Designs for Validation

Here, we provide more details on our designs of individual
shape programs.

’Chair’ consists of 23 parameters, 19 continuous, and 4
boolean parameters:
• ’Legs Type’ is a boolean parameter that determines

whether a chair has four legs or one star-shaped leg in
the middle.

• ’Legs Size’ is a continuous parameter that determines the
thickness of a chair in meters. The valid range of values
is in [0.02, 0.08];

• ’Has Leg Support’ is a boolean parameter that controls
whether legs of a four-legged chair are connected with
support elements;

• ’Support Offset-1’ is a continuous parameter that controls

the height offset of left and right leg support relative to the
seat height. The valid range of values is in [0, 0.5];

• ’Support Offset-2’ is a continuous parameter that controls
the height offset of back and front leg support relative to
the seat height. The valid range of values is in [0, 0.5];

• ’Bottom Thickness’ is a continuous parameter that con-
trols the thickness of the bottom surfaces of one-legged
chairs in meters. The valid range of values is in
[0.02, 0.08];

• ’Bottom Size Scale’ is a continuous parameter that con-
trols the radius of the bottom surface relative to seat
width. The valid range is in [0.7, 1.0];

• ’Star Rotation’ is a continuous parameter that controls the
rotation of the bottom component of one-legged chairs
normals to range [0, 1] in radians. The valid range of val-
ues is in [0.0, 1.00];

• ’Seat Height’, ’Seat Width’, ’Seat Depth’, ’Seat Thick-
ness’ are continuous parameters that control the geome-
try of the seat in meters. The valid ranges are [0.3, 0.9],
[0.4, 0.8], [0.4, 0.6] and [0.04, 0.1], respectively;

• ’Has Back’ is a boolean parameter that controls whether
a chair has back elements;

• ’Back Height’ is a continuous parameter that controls the
height of the chair back in meters. The valid range is in
[0.3, 1.0];

• ’Backrest Scale’ is a continuous parameter that scales
length of backrest relative to the height of the backrest.
The valid range is in [0.1, 1.0];

• ’Back Thickness’ is a continuous parameter that controls
the thickness of the back elements in meters. The valid
range is in [0.02, 0.08];

• ’Backrest Offset Scale’ is a continuous parameter that po-
sitions the backrest relative to the height of the back. The
valid range is in [0.0, 1.0];

• ’Has Arms’ is a boolean parameter that controls whether
a chair has arms;

• ’Arm Depth Scale’ is a continuous parameter that controls
the arm depth relative to the seat depth. The valid range
is in [0.5, 0.8];

• ’Arm Height’ is a continuous parameter that controls the



height of arms in meters. The valid range is in [0.1, 0.3];
• ’Arm Width’ is a continuous parameter that controls the

width of arms in meters. The valid range is in [0.08, 0.15];
• ’Arm Thickness’ is a continuous parameter that controls

the thickness of arms in meters. The valid range is in
[0.02, 0.05].
’Sofa’ consists of 19 parameters, 13 continuous parame-

ters and 6 boolean parameters:
• ’Width’, ’Height’, ’Depth’ are continuous parameters that

control width, height and depth of the base of a sofa in
meters. The valid ranges are in [0.5, 2.7], [0.3, 0.6] and
[0.3, 0.6], respectively;

• ’Has Legs’ is a boolean parameter that controls whether
the sofa has legs;

• ’Leg Size’ is a continuous parameter that controls the size
of legs in meters. The valid range is in [0.03, 0.1];

• ’Leg Height’ is a continuous parameter that controls the
height of legs in meters. The valid range is in [0.01, 0.2];

• ’Has Left Arm’ and ’Has Right Arm’ are boolean param-
eters that control whether the sofa has arms;

• ’Arm Width’, ’Arm Height’, ’Arm Depth’ are con-
tinuous parameters that control the width, height, and
depth of arms in meters. The valid ranges are in
[0.05, 0.3], [0.5, 0.8], [0.6, 1.0];

• ’Has Arm Legs’ is a boolean parameter that controls
whether a sofa has legs directly under the arms;

• ’Has Back’ is a boolean parameter that controls whether
a sofa has a back;

• ’Back Height’ and ’Back Depth’ are continuous parame-
ters that control the height and depth of the back in me-
ters. The valid ranges are in [0.3, 0.7] and [0.05, 0.3];

• ’Back Over-Width Scale’ determines aspect ratio between
width of backrest and seat, and relative to the armrest
width. The valid range is in [0.0, 1.0];

• ’Is L-Shaped’ is a boolean parameter that controls
whether the sofa contains the ’L’ extension;

• ’L Width’ and ’L Depth’ control the width and depth
of the ’L’ extension in meters. The valid ranges are in
[0.3, 0.5], [0.3, 1.0];

• ’Flip L Around Y’ is a boolean parameter that controls
whether the ’L’ extension is on the left or the right side of
the couch.
’Table’ consists of 15 parameters, 11 continuous, and 4

integer parameters:
• ’Width’, ’Depth’ and ’Height’ are continuous pa-

rameters that control the width, depth, and height
of a table in meters. The valid ranges are in
[0.4, 4.0], [0.4, 1.3], [0.4, 1.5];

• ’Top’ is a boolean that controls whether the shape of the
top board of a table is cylindrical or cuboidal;

• ’Top thickness’ is a continuous parameter that controls
the thickness of the top in meters. The valid range is in
[0.04, 0.1];

• ’Legs Type’ is an integer parameter that controls whether
a table has 1 leg in the middle, or 4 legs on the side.

• ’Mid Leg X Scale’ and ’Mid Leg Y Scale’ are continuous
parameters that scale the middle leg relative to the width
and depth of the table. The valid range for both parame-
ters is in [0.05, 1.0];

• ’Has Mid Board’ is a boolean parameter that controls
whether a table has a second board underneath the top;

• ’Mid Board Z Scale’ is a continuous parameter that con-
trols the offset of the middle board relative to the height
of the table. The valid range is in [0.05, 0.5].

• ’Has Cabinet Leg’ is a boolean parameter that determines
if a four-legged table should have an integrated cabinet in
place of legs on one side of the table.

• ’Legs Scale X’ is a continuous parameter that scales leg
of the table relatively to the table width. The valid range
is in [0.01, 0.1].

• ’Legs Scale Y’ is a continuous parameter that scales leg
of the table relatively to the table depth. The valid range
is in [0.01, 0.5].

• ’Legs Offset X’ is a continuous parameter that offsets leg
of the table relatively to the table width. The valid range
is in [0.0, 1.0].

• ’Legs Offset Y’ is a continuous parameter that offsets leg
of the table relatively to the table depth. The valid range
is in [0.0, 1.0].

’Cabinet’ consists of 12 parameters, 8 continuous, 3
boolean, and 1 integer parameter:

• ’Width’, ’Height’, and ’Depth’ are continuous parameters
that control the width , height and depth of a cabinet in
meters. The valid ranges of values are [0.3, 2.0], [0.3, 2.5]
and [0.1, 0.6], respectively;

• ’Board Thickness’ is a continuous parameter that controls
the thickness of side boards. The valid range of values is
[0.01, 0.09];

• ’Has Back’ is a boolean parameter that controls whether
a cabinet has a back board;

• ’Has Legs’ is a boolean parameter that controls whether a
cabinet has legs;

• ’Leg Width’, ’Leg Height’, ’Leg Depth’ are continuous
parameters that control the width, height, and depth of
legs in meters. The valid range is [0.03, 0.1].

• ’Number of Dividing Boards’ is an integer parameter that
controls the number of dividing boards on a cabinet. The
valid range of values is in [2, 5];

• ’Dividing Board Thickness’ is a continuous parameter
that controls the thickness of dividing boards in meters.
The valid range of values is in [0.01, 0.05];

• ’Has Drawers’ is a boolean parameter that controls
whether the cabinet has drawers.



References
[1] Stefan Ainetter, Sinisa Stekovic, Friedrich Fraundorfer, and

Vincent Lepetit. HOC-Search: Efficient CAD Model and Pose
Retrieval from RGB-D Scans. International Conference on
3D Vision, 2024. 1

[2] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. ScanNet: Richly-
Annotated 3D Reconstructions of Indoor Scenes. In Confer-
ence on Computer Vision and Pattern Recognition, 2017. 1

[3] Antoine Guédon and Vincent Lepetit. SuGaR: Surface-
Aligned Gaussian Splatting for Efficient 3D Mesh Recon-
struction and High-Quality Mesh Rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5354–5363, 2024. 7

[4] Ofek Pearl, Itai Lang, Yuhua Hu, Raymond A Yeh, and Rana
Hanocka. GeoCode: Interpretable Shape Programs. arXiv
Preprint, 2022. 1, 3, 4, 5, 6


	Additional Validations
	Additional Validation on ScanNet
	Validation on Synthetic Data
	Validation of Gaussian Splats Integration

	PyTorchGeoNodes – Implementation Details
	Computational Graph
	Efficient Implementation

	Search Algorithm – Implementation Details
	Integration of Gaussian Nodes – Implementation Details
	Shape Program Designs for Validation

