
AniGrad: Anisotropic Gradient-Adaptive Sampling for 3D Reconstruction From
Monocular Video

Supplementary Material

11. Additional implementation details
Code structure. Our system is implemented as a fork of
FineRecon [34], in order to re-use the general framework
and backbone architectures. Our most important additions
are to the TSDF output and surface extraction components
for adaptive resolution (Sections 4.2, 5.1, and 5.2), with
other significant changes to data pre-processing and loss
functions (Sections 6.1 and 6.2).
Fast execution. Our final TSDF prediction architecture
(Eqs. 1 and 3) and our gradient bound computation (Eq.
8) are implemented as vectorized PyTorch operations run-
ning on GPU, and thus have minimal performance impact.
Our surface extraction is implemented from scratch using
Cython [1], allowing us to compile it to a fast Python exten-
sion running on CPU.
Scene size. We determine the scene bounds by rendering
the mesh to depth images from the perspective of each input
camera, then back-projecting to a point cloud, and finally
taking a bounding box around the resulting points. Effec-
tively this sets the bounds according to the visible portion
of the ground-truth mesh. This is important, particularly
for ScanNet++ where certain large portions of the ground
truth mesh are never observed by the input camera. The
voxel grid typically spans 100-300 voxels horizontally, and
50-100 voxels vertically, depending on the camera path.
Image size. For ScanNet++ we use the iPhone images, not
the DSLR images. We resize all input images to 320x240
pixels before passing to our 2D feature extractor. While
higher image resolution might provide useful extra informa-
tion, we found that in practice the additional memory con-
sumption limits other parameters such as batch size, leading
to worse overall performance.
Training. We use the Adam optimizer, with a learning rate
of 1e-3 for 55,000 steps, followed by a learning rate of 1e-
4 for 5,000 steps. Our batch size is 4, but we accumulate
gradients over two mini-batches at a time for an effective
batch size of 8. We train on volumetric scene crops of size
64⇥ 64⇥ 64 voxels.
Basis functions. We found the network training stability
to be sensitive to the activation function used in the basis
function MLP (Eq. 2). We achieved our best results using
the SoftPlus activation with parameter � = 10.

12. Architecture choices
In Table 3, sub-sampling refers to the time to make a TSDF
prediction at all sample points, given the voxel features and

the sample point locations. For our model, sub-sampling
consists of executing the basis functions and performing
the weighted sum across neighboring voxels, as shown in
Eq. 3. For FineRecon it consists of sampling and fusing
high-resolution image features and depth estimates (these
are called point back-projection and depth guidance), and
then running an MLP on the result. We opted to elimi-
nate FineRecon’s depth guidance and point back-projection
branches for efficiency, as we found that they make the
TSDF sampling operation much more expensive. This
change initially caused a large drop in mesh quality (see
Table 2, row e), but we were able to recover it using our
improved mesh-based supervision (Section 6.2).

13. Gradient bound derivation
Here we provide the full derivation of the gradient bound �

used in the paper.

13.1. Definition of the bound
�(s) represents an upper bound on the maximum absolute
predicted TSDF gradient within a central cube (CC) called
s, so by definition we start with,

�(s) � max
p2s

|rd̂(p)|, � 2 R3
, (19)

where d̂ is the predicted TSDF and p = [x, y, z is a query
point. We continue with the derivation in the x dimension
only, noting that it is very similar for y and z. Denoting the
first element of � as �x, we can restate the definition from
Eq. 19 in the x dimension as,

�x(s) � max
p2s

| @
@x

d̂(p)|, �x(s) 2 R. (20)

13.2. Definition of the predicted TSDF
We re-iterate the definition of the predicted TSDF from Sec-
tion 4.2,

d̂(p) =
X

v2N(p)

d̂v(p)vol(p� c7�v). (21)

This is a volume-weighted smoothing of the neighboring
per-voxel predictions. The weights are equivalent to those
used in trilinear interpolation,

vol([x, y, z]) = |xyz|. (22)

Each voxel makes its own independent TSDF prediction as,

d̂v(p) =
X

i

F(v)(i)�i(p� cv), (23)

where F(v) is the voxel feature, F(v)(i) is its i
th channel,

�i is the i
th basis function, and cv is the center of the voxel.

13.3. Bounding d̂ in terms of dv
We start by expanding Eq. 21 as follows,

d̂(p) = (

d̂0(p)vol(p� c7)

+ d̂1(p)vol(p� c6)

...

+ d̂7(p)vol(p� c0)

), (24)

where the relative positions of voxel centers c0 through
c7 are illustrated in Fig. 3. Now, since we aim to bound
| @
@x d̂(p)|, we differentiate Eq. 24 using the chain rule and

take the absolute value,

| @
@x

d̂(p)| = |

vol(p� c7)
@

@x
d̂0(p) + d̂0(p)

@

@x
vol(p� c7)

+ vol(p� c6)
@

@x
d̂1(p) + d̂1(p)

@

@x
vol(p� c6)

...

+ vol(p� c0)
@

@x
d̂7(p) + d̂7(p)

@

@x
vol(p� c0)

|. (25)

In order to bound Eq. 25, we first re-order its terms to group
the @

@x d̂ terms together and the d̂ terms together,

| @
@x

d̂(p)| = |

vol(p� c7)
@

@x
d̂0(p) + ...+ vol(p� c0)

@

@x
d̂7(p)

+ d̂0(p) ·
@

@x
vol(p� c7) + ...+ d̂7(p) ·

@

@x
vol(p� c0)

|. (26)

By the triangle inequality,

| @
@x

d̂(p)| 

|vol(p� c7)
@

@x
d̂0(p) + ...+ vol(p� c0)

@

@x
d̂7(p)|

+ |d̂0(p) ·
@

@x
vol(p� c7) + ...+ d̂7(p) ·

@

@x
vol(p� c0)|.

(27)

Now we bound the two terms separately. For the first, ob-
serve that the sum of the volume weights is always equal to
the total CC volume,

X

v

vol(p� cv) = V
3
, (28)

where V is the voxel size. Thus we can bound the first term
from Eq. 27 by imagining that the maximum of any @

@x d̂v

occurs with maximum volume weight V 3,

|vol(p�c7)
@

@x
d̂0(p�c0)+...+vol(p�c0)

@

@x
d̂7(p�c7)| 

V
3 max{max

p
| @
@x

d̂0(p� c0)|, ...,max
p

| @
@x

d̂7(p� c7)|}.

(29)

The second term from Eq. 27 can be bounded using the fact
that as the volume grows to the left, it must shrink to the
right, @

@xvol(p � cv) = � @
@xvol(p � cv+2) (see Fig. ??).

Thus,

|d̂0(p)
@

@x
vol(p� c7) + ...+ d̂7(p)

@

@x
vol(p� c0)| =

| @
@x

vol(p� c7)(d̂2(p)� d̂0(p))

+
@

@x
vol(p� c6)(d̂3(p)� d̂1(p))

+
@

@x
vol(p� c3)(d̂6(p)� d̂4(p))

+
@

@x
vol(p� c2)(d̂7(p)� d̂5(p))| (30)

We can then observe that
P

v2[2,3,6,7]
@
@xvol(p � cv) =

�V
2, so Eq. 30 is bounded as,

|d̂0(p�c0)
@

@x
vol(p�c7)+...+d̂7(p�c7)

@

@x
vol(p�c0)| 

V
2 max{

max
p

|(d2(p)� d0(p)|,

max
p

|(d3(p)� d1(p)|,

max
p

|(d6(p)� d4(p)|,

max
p

|(d7(p)� d5(p)|,

} (31)

Combining Eq. 29 and Eq. 31, we arrive at Eq. 6 from the
main paper, restated here,

�x(s)  V
3 max
v=0...7

{max
p

| @
@x

d̂v(p)|}+

V
2 max
v=[0,1,4,5]

{max
p

|d̂v+2(p)� d̂v(p)|}. (32)

13.4. Bounding dv in terms of �
We still don’t know the quantities maxp | @

@x d̂v(p)| and
maxp |d̂v+2(p) � d̂v(p)| from Eq. 32 a priori. Thus we
bound the first and second terms from Eq. 32 as follows.

For the first term, we can expand the absolute value,

max
p

| @
@x

d̂v(p)| = max{|max
p

@

@x
d̂v(p)|, |min

p

@

@x
d̂v(p)|}.

(33)
The max and the min can then be bounded by recalling
Eq. 23, but rounding each �i up or down to its maximum
or minimum over the voxel depending on the sign of the
weight,

max
p

@

@x
d̂v(p) 

X

i

F(v)(i)⌧v,i(p) (34)

min
p

@

@x
d̂v(p) 

X

i

F(v)(i)⇢v,i(p) (35)

⌧v,i(p) =

(
maxp

@
@x�i(p) F(v)(i) � 0

minp
@
@x�i(p) F(v)(i) < 0

(36)

⇢v,i(p) =

(
maxp

@
@x�i(p) F(v)(i) < 0

minp
@
@x�i(p) F(v)(i) � 0

(37)

For the second term from Eq. 32, we can similarly expand
the absolute value,

max
p

|d2(p)� d0(p)| = max{

|max
p

d2(p)�min
p

d0(p)|, |max
p

d0(p)�min
p

d2(p)|},

(38)

and each max and min can be bounded as,

max
p

dv(p) 
X

i

F(v)(i)µv,i(p) (39)

min
p

dv(p) 
X

i

F(v)(i)!v,i(p) (40)

µv,i(p) =

(
maxp �i(p) F(v)(i) � 0

minp �i(p) F(v)(i) < 0
(41)

!v,i(p) =

(
maxp �i(p) F(v)(i) < 0

minp �i(p) F(v)(i) � 0
(42)

13.5. Bounding �

To estimate maxp �i(p) and minp �i(p), we densely sample
each �i over the domain of one voxel, and then we take the
minimum and maximum. In practice we use a sample rate
of 15⇥ 15⇥ 15, for a resolution of approximately 2.7 mm.
To estimate maxp

@
@x�i(p) and minp

@
@x�i(p), we use finite

differences on the previously sampled points.

13.6. Summary
In this section we have derived a local gradient bound �(s)
that can be computed in terms of the minimum and maxi-
mum values and gradients of the bases, which are estimated
offline and are therefore available for free at test time, as
well as the voxel features F(v).

The equations throughout this section are readily imple-
mented as massively parallel GPU operations, and on av-
erage it takes about 170 ms to compute � over the whole
scene, for ScanNet [8].

14. ScanNet++ results
In Fig. 7 and Table 4, we show our results on the ScanNet++
dataset [39]. These results are obtained using the same
architecture and hyperparameters as our ScanNet model,
showing that our model can easily be adapted to new data.

F-Score " Chamf. (cm) # Mesh size (MB) # Per-frame (ms) # SEL (s) #
Ours 82.7 3.83 7.78 7.0 1.34

Table 4. Reconstruction metrics for our method on ScanNet++ [39]. The accuracy metrics, F-score and Chamfer distance, are quite strong
relative to the results on ScanNet [8] (e.g. F-score of 82.7 vs. 74). We presume this is due to the higher-quality ground truth in ScanNet++,
which uses stationary laser scanners instead of structured-light depth cameras, leading to more accurate training and evaluation.

Figure 7. Qualitative results on the ScanNet++ dataset [39].

	. Introduction
	. Related Work
	. Intuition and proposed approach
	. Model architecture
	. Building the scene feature volume
	. TSDF prediction with fixed basis functions
	. Occupancy filtering

	. Surface Extraction
	. Adaptive sample rates
	. Non-uniform marching cubes

	. Training
	. Ground truth generation
	. Loss function

	. Implementation details
	. Experiments
	. Reconstructing ScanNet
	. Reconstructing ScanNet++

	. Discussion
	. Limitations and future work

	. Conclusion
	. Additional implementation details
	. Architecture choices
	. Gradient bound derivation
	. Definition of the bound
	. Definition of the predicted TSDF
	. Bounding d in terms of dv
	. Bounding dv in terms of
	. Bounding
	. Summary

	. ScanNet++ results

