
LPOSS: Label Propagation Over Patches and Pixels

for Open-vocabulary Semantic Segmentation

Supplementary Material

6. Analysis of performance

6.1. Quantitative analysis per image

In Figure 5a and Figure 5b, we present the comparison

of mIoU and Boundary IoU performance of LPOSS and

LPOSS+. We observe that LPOSS+ consistently improves

the performance of LPOSS with respect to both metrics.

Figure 5c presents the comparison of mIoU and Bound-

ary IoU performance of LPOSS+. We see that although the

two metrics are correlated to some extent, they are still com-

plementary to each other. Boundary IoU performance is

usually lower than mIoU performance, which is consistent

with the definition that Boundary IoU measures the fine-

grained performance at segment borders, which consist of

the hardest pixels to classify.

We present the comparison of the mIoU performance of

the oracle experiment and LPOSS in Figure 5d. We observe

that oracle performance varies a lot across images, which

we attribute to the differences in object size and shape. Ad-

ditionally, the oracle performance acts as an upper bound in

the majority of cases. Exceptions are justified by the effect

of bilinear interpolation and combining predictions across

many windows.

6.2. Per image/class comparison with MaskCLIP

LPOSS refines MaskCLIP predictions, so we look at how

successful LPOSS is in improving these predictions. Fig-

ure 6 shows the comparison of the mIoU for LPOSS and

MaskCLIP on the image and class level. We observe that

LPOSS successfully improves MaskCLIP predictions in the

vast majority of cases. Rarely, an image, with already very

low performance, is further harmed if the MaskCLIP output

is spatially very noisy, as shown in Figure 7.

6.3. The impact of window size

Furthermore, we look into the impact of window size on

CLIP-DINOiser and LPOSS. In Figure 8, we visualize the

results of both methods as well as MaskCLIP using two dif-

ferent window sizes. We observe that there are some cases

when MaskCLIP has better output for the large windows,

used by CLIP-DINOiser, vs the small ones, used by LPOSS.

In these cases, CLIP-DINOiser outperforms LPOSS. We

also observe that there are cases where LPOSS performs

well for both large and small window sizes, while CLIP-

DINOiser performs better for the larger window size. Based

on this, we propose to run our methods using an ensemble

of large and small window sizes, and observe that this fur-

ther improves the performance of LPOSS and LPOSS+, as

presented in Section 4.3.

7. Ablation study

Design of Sa and Sp. We construct Sa as a k-nearest

neighbor graph with edge weights in the form sγ , as it

is a common choice for the adjacency matrix in the label

propagation literature [21, 38]. Another choice could be

exp (− 1−s
σ

), which we found to perform slightly worse for

LPOSS (−0.1%). For Sp, we chose the RBF kernel as in

CRFs and bilateral filters. We further tested a linear kernel,

which performs a bit worse (−0.2%).

LPOSS and LPOSS+ construct adjacency matrices SP

and S
P̃

in a different fashion. The primary difference comes

from the way they control the sparsity of the graph. LPOSS

uses k-nearest neighbors on top of the appearance-based

adjacency Sa. On the other hand, LPOSS+ controls the

sparsity using a binary spatial affinity Sp̃ that has non-

zero elements only within the r × r neighborhood of the

pixel. This difference is motivated by two reasons. First,

0 20 40 60 80 100
0

20

40

60

80

100

LPOSS mIoU

L
P

O
S

S
+

m
Io

U

(a) mIoU comparison of LPOSS and

LPOSS+

0 20 40 60 80 100
0

20

40

60

80

100

LPOSS Boundary IoU

L
P

O
S

S
+

B
o
u
n
d
ar

y
Io

U

(b) Boundary IoU comparison of

LPOSS and LPOSS+

0 20 40 60 80 100
0

20

40

60

80

100

mIoU

B
o
u
n
d
ar

y
Io

U

(c) Comparison between mIoU and

Boundary IoU for LPOSS+

0 20 40 60 80 100
0

20

40

60

80

100

Oracle mIoU

L
P

O
S

S
+

m
Io

U

(d) mIoU comparison of Oracle

(patch-level res.) and LPOSS

Figure 5. Analysis of LPOSS and LPOSS+ performance per image. The plot shows 5000 randomly selected test images from all eight

datasets used in the paper.



0 20 40 60 80 100

0

20

40

60

80

100

MaskCLIP mIoU

L
P

O
S

S
m

Io
U

Per image

0 20 40 60 80 100

0

20

40

60

80

100

MaskCLIP mIoU

L
P

O
S

S
m

Io
U

Per class

Figure 6. Comparison of MaskCLIP and LPOSS performance

per image and per class. The plot shows 5000 randomly selected

test images and all classes from all eight datasets in our experi-

ments.

with LPOSS+, we aim to refine the predictions around the

boundaries, which can be accomplished by looking at the

neighborhood of each pixel. Second, the color-based fea-

tures used in LPOSS+ can be very noisy, which can create

issues for k-nearest neighbor search. To validate this, we

try implementing LPOSS+ using the functions of LPOSS.

However, we have found that this makes LPOSS+ ineffec-

tive and actually produces performance results worse than

LPOSS. Additionally, we also experiment with using an

RBF kernel in Sp̃ and find that it performs a bit worse than

Image(GT) MaskCLIP LPOSS

Figure 7. Examples of the LPOSS failure cases that are due

to the MaskCLIP noisy predictions. MaskCLIP produces very

spatially noisy predictions in some cases, which then translates to

the bad performance of LPOSS. Pixels shown in white are pixels

that do not have a class in the ground-truth.

Coupled feat.

extraction and

prediction

Method Sa Sp Pix. feature Avg

LPOSS DINO ✓ ✗ - 41.3

LPOSS CLIP ✓ ✗ - 38.3

LPOSS DINO ✗ ✗ - 40.6

LPOSS DINO ✓ ✓ - 39.2

LPOSS+ DINO ✓ ✗ Lab 42.1

LPOSS+ CLIP ✓ ✗ Lab 39.0

LPOSS+ DINO ✗ ✗ Lab 41.4

LPOSS+ DINO ✓ ✓ Lab 39.8

LPOSS+ DINO ✓ ✗ depth 42.2

LPOSS+ DINO ✓ ✗ Lab+depth 42.2

Table 4. Ablations for LPOSS and LPOSS+. We report mIoU

averaged across 8 datasets. Default setups used in the paper are

marked with .

the proposed method (achieving the same performance as

the proposed method when the RBF kernel converges to the

proposed binary values).

Features used in adjacency Sa. We replace DINO features

for the construction of Sa with CLIP features and observe a

significant drop in performance for both proposed methods,

as shown in Table 4.

Impact of spatial adjacency Sp. We remove the use of Sp

in the construction of SP , i.e. set it to a matrix full of ones,

and observe, as shown in Table 4, that using Sp improves

the results both for LPOSS and LPOSS+. Additionally, in

Figure 9, we visualize the impact of Sp on the predictions.

We observe that the use of Sp cleans the predictions.

Impact of window-based predictions. We perform an ex-

periment where we do feature extraction per window, as al-

ways, but also prediction per sliding window, as other meth-

ods do too [23, 26, 46]. We observe, as shown in Table 4

that our choice of performing prediction jointly across all

windows is indeed beneficial to the performance of LPOSS

and LPOSS+.

Pixel features. We switch pixel features from the de-

fault choice of Lab color space to depth predictions from

DepthAnythingV2 [49] and their combination. We observe,

as shown in Table 4, that using predicted depth marginally

improves the results, but we opt not to use it in our de-

fault setup as it introduces another model during inference.

We conclude that the use of different pixel-level features is

worth future exploration.

Impact of hyper-parameters k, σ, and r. In Figure 10, we

show the impact of hyper-parameters k, σ, and r on the per-

formance. Good performance is achieved over a wide range

of values. For LPOSS+, r controls the performance/speed

trade-off (via sparsity), and we found r = 13 to be a good

compromise.



Image(GT) MaskCLIP@448 MaskCLIP@224 CLIP-DINOiser@448 CLIP-DINOiser@224 LPOSS@448 LPOSS@224

Figure 8. Impact of the window size on different methods. The top rows show examples where both CLIP-DINOiser and LPOSS benefit

from the large window size. The bottom rows show examples where LPOSS works well for both window sizes while CLIP-DINOiser

performs better for the larger window size. Pixels shown in white are pixels that do not have a class in the ground-truth. Default setup of

each method is shown in bold.

Image(GT) MaskCLIP LPOSS w/o Sp LPOSS w Sp

Figure 9. Impact of the spatial adjacency Sp. A comparison of segmentation maps of LPOSS when applied without or with Sp. Pixels

shown in white are pixels that do not have a class in the ground-truth.



8. Additional results

8.1. Method comparison using a different VM.

Throughout the paper, we use DINO [5] with ViT-B/16

backbone as a VM. However, here we show that LPOSS

and LPOSS+ can be applied with other VM backbones as

well. Concretely, we use DINO [5] with ViT-B/8 backbone

and DINOv2 [5] with ViT-B/14 backbone. Considering that

the VM now uses a patch size different from that of a VLM,

the feature vectors coming from the VM and VLM are of a

different size. To apply LPOSS in such a situation, we up-

sample the VLM features to match the size of VM features.

We present the results of this experiment in Table 5 and

compare the results of LPOSS and LPOSS+ with Proxy-

CLIP [26] and LaVG [23], which also report the perfor-

mance of such experiments.

DINO with ViT-B/8. For DINO with ViT-B/8, we ob-

serve that both LPOSS and LPOSS+ outperform LaVG,

while ProxyCLIP outperforms LPOSS and performs on

par with LPOSS+. However, ProxyCLIP again signifi-

cantly outperforms LPOSS and LPOSS+ only on Object

and VOC20 datasets, for which we provide an explanation

in Section 4.3. We also observe that going to pixel-level

predictions in LPOSS+ improves the results even when the

patch size is as small as 8.

Additionally, we observe that after using ViT-B/8 back-

bone for the VM, the graph defined by S(W) in (8) has four

times as many nodes compared to the default setup of us-

ing ViT-B/16 backbone, with the increase coming from the

fact that there are four times more feature vectors for each

sliding-window. So we propose to just increase the value

of the hyper-parameter k from 400 to 800, while keeping

all other hyper-parameters fixed, to allow better connectiv-

ity between nodes coming from different sliding windows.

With this change, we observe that LPOSS performs on par

with ProxyCLIP, while LPOSS+ outperforms it, as shown

in Table 5.

DINOv2 with ViT-B/14. For DINOv2, we observe that

LPOSS and LPOSS+ perform slightly worse than for the

case of using DINO with ViT-B/16. However, LPOSS+

still outperforms ProxyCLIP, while LPOSS performs on par

with it. We note that due to the very different distribution of

similarities coming from DINOv2, compared with DINO,

we use a value of γ = 7.0 for LPOSS and LPOSS+.

8.2. Complementarity with other methods.

We build LPOSS and LPOSS+ by applying them on top

of initial predictions coming from the VLM; in particular

as MaskCLIP computes them. However, these initial pre-

dictions can come from any model, so here we show that

we can apply them on top of CLIP-DINOiser [46], by sim-

ply using YDINOiser instead of Yvlm. Compared to the main

paper experiments, we also use the sliding window setup

used in CLIP-DINOiser, as it significantly improves CLIP-

DINOiser performance as shown in Table 3.

We present the results of these experiments in Table 6.

We observe that LPOSS and LPOSS+ are complementary

to CLIP-DINOiser and that they can further improve its per-

formance. Additionally, we show that using a better ini-

tialization of CLIP-DINOiser compared to MaskCLIP im-

proves LPOSS and LPOSS+ results as well.

8.3. LPOSS+ vs. other post-processing methods.

We compare LPOSS+ with two other post-processing pixel

refinement methods, PAMR [1] and DenseCRF [24] by ap-

plying them on top of LPOSS predictions. PAMR, with 5

iterations and dilations 8 and 16, achieves 41.8 mIoU (vs.

42.1 of LPOSS+) while DenseCRF was unable to improve

LPOSS at all.

9. Computation requirements

We measure the average time necessary to perform the in-

ference per image on the VOC20 dataset using an NVIDIA

A100 GPU. LPOSS processes each image in under 0.1s,

which is comparable to all methods except LAVG (6.5s).

LPOSS+ for pixel-level post-processing takes 0.5s/image,

comparable to or faster than pixel-level post-processing

methods PAMR [1] (0.5s) or DenseCRF [24] (1.6sec). Note

that LPOSS+ speed can be controlled via hyper-parameter

r (see Figure 10).

50 200 400 800

38

39

40

41

k

m
Io

U

LPOSS

50 100 200 400
38

39

40

41

σ

LPOSS

3 5 7 11 13 15

40

42

44

r

200

400

600

ti
m

e[
m

s]

LPOSS
LPOSS+
LPOSS+ time

Figure 10. Impact of hyper-parameters k, σ, and r. We report mIoU averaged across 8 datasets. Default setups in the paper are marked

with ♦.



Method VM VOC Object Context C59 Stuff VOC20 ADE20k City Avg

ProxyCLIP* [26] DINO(ViT-B/16) 59.3 36.3 34.4 38.0 25.7 79.7 19.4 36.0 41.1

LaVG* [23] DINO(ViT-B/16) 61.8 33.3 31.5 34.6 22.8 81.9 14.8 25.0 38.2

LPOSS DINO(ViT-B/16) 61.1 33.4 34.6 37.8 25.9 78.8 21.8 37.3 41.3

LPOSS+ DINO(ViT-B/16) 62.4 34.3 35.4 38.6 26.5 79.3 22.3 37.9 42.1

ProxyCLIP [26] DINO(ViT-B/8) 61.3 37.5 35.3 39.1 26.5 80.3 20.2 38.1 42.3

LaVG [23] DINO(ViT-B/8) 62.1 34.2 31.6 34.7 23.2 82.5 15.8 26.2 38.8

LPOSS DINO(ViT-B/8) 61.4 33.5 34.9 38.2 26.3 77.6 22.6 40.2 41.8

LPOSS (k = 800) DINO(ViT-B/8) 62.2 34.1 35.2 38.5 26.4 78.7 22.5 39.4 42.1

LPOSS+ DINO(ViT-B/8) 62.2 34.2 35.5 38.9 26.8 78.0 23.0 40.2 42.3

LPOSS+ (k = 800) DINO(ViT-B/8) 63.0 34.8 35.8 39.1 26.8 79.0 22.8 39.3 42.6

ProxyCLIP [26] DINOv2(ViT-B/14) 58.6 37.4 33.8 37.2 25.4 83.0 19.7 33.9 41.1

LPOSS (γ = 7.0) DINOv2(ViT-B/14) 59.7 33.3 34.3 37.5 25.6 80.0 21.9 36.0 41.0

LPOSS+ (γ = 7.0) DINOv2(ViT-B/14) 60.8 34.3 35.1 38.3 26.2 80.4 22.4 36.7 41.8

Table 5. Performance comparison in terms of mIoU on 8 datasets using ViT-B/16 backbone for VLM and DINO ViT-B/8, DINO

ViT-B/16, or DINOv2 ViT-B/14 backbone for VM. Default setups of hyper-parameters used in the paper are marked with . * denotes

the methods for which we reproduce the performance.

Method VOC Object Context C59 Stuff VOC20 ADE20k City Avg

MaskCLIP* [53] 32.9 16.3 22.9 25.5 17.5 61.8 14.2 25.0 27.0

LPOSS (MaskCLIP) 61.1 32.5 32.9 36.3 25.2 82.8 20.4 31.7 40.4

LPOSS+ (MaskCLIP) 61.8 33.2 33.4 36.9 25.6 83.1 20.7 31.9 40.8

CLIP-DINOiser* [46] 62.2 34.7 32.5 36.0 24.6 80.8 20.1 31.1 40.2

LPOSS (CLIP-DINOiser) 65.0 36.3 32.9 36.6 25.1 84.0 19.7 29.3 41.1

LPOSS+ (CLIP-DINOiser) 66.1 36.8 33.4 37.2 25.4 84.2 19.9 29.5 41.6

Table 6. Performance comparison in terms of mIoU on 8 datasets applying LPOSS and LPOSS+ on top of MaskCLIP (default choice

in the main paper) or CLIP-DINOiser [46]. ViT-B/16 backbone is used both for VLM and VM. Sliding-window size 448× 448 and stride

224× 224 as used in CLIP-DINOiser. * denotes the methods for which we reproduce the performance.


