Quaffure: Real-Time Quasi-Static Neural Hair Simulation

Supplementary Material

Figure 1. We apply our trained groom deformation decoder on
novel grooms, unseen during training. Top row shows the groom
transformation module output and bottom row shows the full pre-

dicted result. Note that predicted results are still reasonable for
grooms that are similar to those in the training set.

1. Groom Generalization

We train each of our networks on 10 randomly selected
grooms and in the main paper, we showcase how the method
generalizes to body pose and shape variations. Although ef-
ficiency was our design goal and not groom generalization,
we investigate the results of decoding groom deformations
for unseen grooms which were not used for training. See
Figure 1 for visual results. As expected, prediction qual-
ity is degraded when compared to the training set. How-
ever, note how the method produces reasonable deforma-
tions where the strands follow the gravity direction, we also
note that deformations are more limited and muted, stay-
ing closer to the result of the groom transformation module.
Given our real-time goals, we opted for a small model size.
Despite that, our model can already handle at least 10 dis-
tinct grooms. We acknowledge that a larger decoder may be
needed to scale to more grooms, sacrificing inference per-
formance as discussed in the main paper.

2. Network Structures

In this section we provide more details about our network
architectures, namely the groom autoencoder, which is used
for training the groom latent space, and the groom defor-
mation decoder, which takes as input the groom latent code,
body shape and body pose, and predicts strand motion rela-
tive to the rigid body motion.

2.1. Groom Autoencoder

In order to build a latent groom space, we train a groom
autoencoder. We define the hair groom as a texture of di-
mension 7" x T x 3N on the head scalp, uniformly dis-
tributing strands across the scalp. In all experiments we use
texture size of 7' = 64 and number of vertices per strand
N = 24. An encoder takes the 2D groom representation
(with channel size of 3N) as input, and encodes it using
a series of convolutional layers, decreasing the spatial di-
mension to 4 x 4 while gradually increasing channel size
(128 — 256 — 512 — 1024). Each layer consists of a
residual block and convolutional downsampling. Finally, a
linear layer is applied to convert feature texture into a latent
code of dimension 16. Groom decoder follows an equiva-
lent convolutional architecture, but in reverse. Upsampling
at each layer is done using transpose convolutions. As ac-
tivations at each layer, we use a sigmoid linear unit (SiLU)
function.

2.2. Groom Deformation Decoder

To predict groom deformation given body shape and pose
parameters, we train a groom deformation decoder. The
input to the model consists of a groom latent code (of di-
mension 16), body shape (of dimension 10) and pose (of
dimension 81) parameters, and the output is a texture of di-
mension 7' X T' x 3N, where the groom is again defined on
the head scalp (with T' = 64 and N = 24). However, in the
case of deformation decoder, we predict only the position
difference to the rigidly moved positions, instead of abso-
lute positions. The decoder architecture is similar to the
groom autoencoder, starting with a linear layer and contin-
uing with convolutional upsampling (adapting channel size
as 1024 — 2048 — 2048 — 1024).

3. Implementation and Training Details

We leverage a vast data set of motion capture data which in-
cludes a large variety of motions. For every motion record-
ing, we randomly sample poses from the sequence. In addi-
tion, to model shape variations, we randomly sample body
shape coefficients at training time. In all of our results,
strands consist of N = 24 vertices which are encoded into
64 x 64 texture maps. This choice of texture dimensions
provides us with the ability to model several thousands of
hair strands which is sufficient for guide hair simulation.
Prior work [2] shows high quality upsampling results for
as little as 128 guide strands. For better visual results, we
rigidly fix the first M to be fully constrained to the output
of the groom transformation module, we do this to main-



tain the intended hair style and strand orientations near the
root. In our results, M = 8. Our method does not re-
quire parameter tuning for different hairstyles and all results
are obtained using the following values: Kgyeren = 10000,
Keosserat = 3000, kpe = 5000, kg = 500, kpr = 10, b = 0.5
and D = 1.0. All results are obtained using the Adam op-
timizer [3] with a learning rate of 1.0e 2. We train using
10 grooms and 16 poses per batch where Nposeree = 4.
We implement our method with PyTorch [4], with training
and inference measurements performed on an AMD Ryzen
Threadripper PRO 3975WX CPU and a single NVIDIA
RTX A6000 GPU. We make use of Polyscope [5] for visu-
alization and Blender [1] for producing path-traced renders.

References

[1] Blender. Blender. https://www.blender.org//, 2024. Ac-
cessed on November 2024. 2

[2] Jerry Hsu, Tongtong Wang, Zherong Pan, Xifeng Gao,
Cem Yuksel, and Kui Wu. Real-time physically guided
hair interpolation. ACM Transactions on Graphics
(TOG), 43(4):1-11, 2024. 1

[3] Diederik P Kingma. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 2

[4] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Au-
tomatic differentiation in pytorch, 2017. 2

[5] Nicholas Sharp et al. Polyscope, 2019.
www.polyscope.run. 2



	. Groom Generalization
	. Network Structures
	. Groom Autoencoder
	. Groom Deformation Decoder

	. Implementation and Training Details

