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1. Proof of Theorem
1.1. A Proof of Theorem 1

Recalling traditional unadversarial learning. Unadver-
sarial learning aims to develop an image perturbation that
enhances the performance on a specific class, which can be
succinctly described as follows:

δ̂ = argmin
δ

L(fθ(x+ δ), y), s.t. ||δ|| ≤ ϵ (1)

where L (·) denotes objective function, x and y are input
image and its label, fθ is a pre-trained model with parameters
θ, δ is a perturbation, ϵ is a small threshold. Solves this
problem in an iterative way formulated as

δk+1 = δk + α · sign (∇xL(fθ(x+ δk), y)) , k ∈ [0,K − 1],
(2)

where α is a trade-off parameter, K is iteration number,
δ0 is an initial random noise. We re-consider the iterative
optimization process above and obtain the theorem below.

Restatement of Theorem 1 Given the unadversarial learn-
ing problem defined in Eq. (1), the iterative process featured
by Eq. (2) can be expressed as the following generative form.

δk = δ0 + V · FΦ

(
∂δ0
∂x

)
, (3)

where δ0 is an initial random noise, V is a bound constant,
FΦ is a generative function.

Proof. First, according to the chain principle, we can convert
Eq. (2) into

δk+1 = δk + α ·
(
∂L

∂fθ
· ∂fθ
∂x

·
(
1 +

∂δk
∂x

))
. (4)
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Since that the learning will converge to the unadversarial
examples, α · ∂L

∂fθ
· ∂fθ

∂x is bounded by a certain constant,
denoted by Uk > 0, thereby Eq. (4) become

δk+1 ≤ δk + Uk

(
1 +

∂δk
∂x

)
. (5)

We make a further substitution on δk according to the law
presented in Eq. (5), leading to

δk+1 ≤
[
δk−1 + Uk−1

(
1 +

∂δk−1

∂x

)]
+ Uk

(
1 +

∂δk
∂x

)
.

(6)
By continuing this substitution on δk−1, · · · , δ0 in order, we
have

δk+1 ≤ δ0 + U0

(
1 +

∂δ0
∂x

)
+ U1

(
1 +

∂δ1
∂x

)
+ · · ·+ Ui

(
1 +

∂δi
∂x

)
+ · · ·+ Uk

(
1 +

∂δk
∂x

)
≤ δ0 + Um

[
k +

∂δ0
∂x

+
∂δ1
∂x

+ · · ·+ ∂δk
∂x

]
,

(7)

where Um = max{U0, U1, · · · , Uk}.
To obtain generative form, we explore the relationships

between {∂δ1
∂x , ∂δ2

∂x , · · · , ∂δk
∂x } and ∂δ0

∂x , respectively. To this
end, we first investigate the relationship between ∂δ1

∂x and
∂δ0
∂x , combining Eq. (5).

∂δ1
∂x

≤ ∂δ0
∂x

+ U1 ·
∂

∂x

(
∂δ0
∂x

)
= h1

(
∂δ0
∂x

)
(8)

where, h1(·) stands for an equivalent function. For ∂δ2
∂x , we
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have the following equation based on Eq. (5) and Eq. (8).

∂δ2
∂x

≤ ∂δ1
∂x

+ U2 ·
∂

∂x

(
∂δ1
∂x

)
= h1

(
∂δ0
∂x

)
+ U2 ·

∂

∂x

(
h1

(
∂δ0
∂x

))
= h2

(
∂δ0
∂x

) (9)

In the recursion way presented by Eq. (8) and Eq. (9),
{∂δ3

∂x , · · · , ∂δk
∂x } can be expressed as

∂δ3
∂x

≤ h3

(
∂δ0
∂x

)
, · · · , ∂δk

∂x
≤ hk

(
∂δ0
∂x

)
(10)

Therefore, substituting Eq. (8), (9) and (10) into Eq. (7), we
have

δk+1 ≤ δ0 + Um

[
k +

∂δ0
∂x

+ h1

(
∂δ0
∂x

)
+ · · ·+ hk

(
∂δ0
∂x

)]
.

(11)
Let FΦ

(
∂δ0
∂x

)
=

[
k + ∂δ0

∂x + h1

(
∂δ0
∂x

)
+ · · ·+ hk

(
∂δ0
∂x

)]
and V be a value that makes the equality relationship hold.
Eq. (11) becomes the generative form below.

δk = δ0 + V · FΦ

(
∂δ0
∂x

)
. (12)

1.2. A Proof of Theorem 2

Recalling the calculation of the fine-grained saliency map.
It calculates saliency by measuring central-surround differ-
ences within images.

G(h,w) =
∑
ς

max {cen (h,w)− sur (h,w, ς) , 0} ,

cen (h,w) = I (h,w) ,

sur (h,w, ς) =

h′=ς∑
h′=−ς

w′=ς∑
w′=−ς

I(h+ h′, w + w′)− I(h,w)

(2ς + 1)2 − 1
,

(13)

where (h,w) is the coordinate of one pixel in grey-scale im-
age (transformed by xt) with its corresponding value denoted
as I(w, h), and ς ∈ {1, 3, 7} denotes surrounding values.

Restatement of Theorem 2 Given the partial derivatives
of the initial random noise δ0 w.r.t image x is ∂δ0

∂x and x’s
saliency map is s = G(x) where G is the computation
function of saliency map. We have the following relationship:

∂δ0
∂x

≤ U · s, (14)

where U > 0 is a bound constant.

Proof. we treat s as a middle variable, thus ∂δ0
∂x can be

expressed as the following equation by the chain law.

∂δ0
∂x

=
∂δ0
∂s

· ∂s
∂x

≤ U · ∂s
∂x

, (15)
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Figure 1. Illustration of x+△x at coordinate (h,w) as we select
the simplest surround case ς = 1.

where U > 0 is a bound constant. In Eq. (15), the inequality
holds because both the initial noise and the specific saliency
map are bounded, resulting in the relative changes between
them also being restricted. In addition, according to the
definition of derivative, we have

∂s

∂x
=

∂G(x)

∂x
≈ G(x+△x)−G(x)

△x
, (16)

where △x is a tiny variation.
It is known that the saliency map at (h,w) is only related

to itself and its surrounding pixels. Without loss of generality,
we build the proof based on the simplest surround case ς = 1
where △x at (h,w) is presented by Fig. 1. According to
Eq. (13), we have

cen (h,w,△x) = cen (h,w) + I△ = Ihw + I△.

sur (h,w, ς,△x)

=

∑4
i=1(Ii + I△i)− (Ihw + I△)

8
,

=

(∑4
i=1 Ii − Ihw

)
+

(∑4
i=1 I△i − I△

)
8

,

= sur(h,w, ς) +
sur△(ς,△x)

8
.

(17)

Thus, G(x+△x) at (h,w) can be expressed as

Ghw(x+△x) =
∑
ς

max{[cen (h,w)− sur (h,w, ς)]

−
[
1

8
sur△(ς,△x)− I△

]
, 0}

(18)

Let A1 = cen (h,w) and A2 = sur (h,w, ς), B1 =
cen (h,w) − sur (h,w, ς), B2 = 1

8 sur△(ς,△x) − I△.
Eq. (16) has two situations as follows.
• S-1. When A1 > A2, B1 > B2,

G(x+△x)−G(x)

△x

=
I△ − 1

8
sur△(ς,△x)

I△

=
1

2
−

4∑
i=1

I△i

I△

(19)
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Figure 2. Visualize the styles and characteristics of each dataset by analyzing the RGB statistics of proliferative diabetic retinopathy (PDR)
samples across APTOS, DDR, DeepDR, and Messidor-2.

• S-2. When A1 < A2, B1 < B2,

G(x+△x)−G(x)

△x
= 0 (20)

Let d1 = cen(h,w)− sur(h,w, ς), d2 = 1
2 −

∑4
i=1

I△i

I△
, we

have another two cases:
• S-3. When A1 < A2, B1 > B2,

G(x+△x)−G(x)

△x
≤ D1(1+

d2
d1

)d1, (21)

where D1 is a bound constant.
• S-4. When A1 > A2, B1 < B2,

G(x+△x)−G(x)

△x
≤ D2d1, (22)

where D2 is another bound constant.
The four cases above provide us with an insight that ∂s

∂x is
proportional to the saliency map s, namely

∂s

∂x
∝ s. (23)

There are two reasons contributing to this conclusion.
First, ∂s

∂x ’ values confine to a binary situation. More im-
portantly, in S-3 and S-4, ∂s

∂x is proportional to the central-
surround pixel value difference d1, which are also depicted
by saliency maps. Combing Eq. (15) and Eq. (23), we have

∂δ0
∂x

≤ U · ∂s
∂x

∝ U · s. (24)

2. Implementation Details
2.1. Datasets Details

Dataset description. We evaluate the proposed method on
four standard DR benchmarks. Their details are presented
as follows.
• APTOS [1] The dataset originates from Kaggle’s APTOS

2019 Blindness Detection Contest, organized by the Asia
Pacific Tele-Ophthalmology Society (APTOS). It com-
prises a total of 5,590 fundus images provided by Aravind

Table 1. Label distribution of the four evaluation datasets: APTOS,
DDR, DeepDR, and Messidor-2.

Dataset No DR Mild DR Moderate DR Severe DR Proliferative DR Total

APTOS 1,805 370 999 193 295 3,662
DDR 6,265 630 4,477 236 913 13,673
DeepDR 914 222 398 354 112 2,000
Messidor-2 1,017 270 347 75 35 1,748

Eye Hospital in India. However, only the annotations for
the training set (3,662 images) are publicly accessible, and
these are used in this study.

• DDR [3] The DDR dataset comprises 13,673 fundus im-
ages collected from 9,598 patients across 23 provinces
in China. These images are classified by seven graders
based on features such as soft exudates, hard exudates, and
hemorrhages.

• DeepDR [5] The DeepDR dataset comprises 2,000 fundus
images of both left and right eyes from 500 patients in
Shanghai, China.

• Messidor-2 [2] The Messidor-2 dataset includes 1,748
macula-centered eye fundus images. This dataset partially
originates from the Messidor program partners, with addi-
tional images contributed by Brest University Hospital in
France.

The label distribution of datasets. All datasets exhibit
imbalanced class distributions, as shown in Table 1. Specifi-
cally, in APTOS, the “No DR” class comprises about 49.2%
of all samples. In DDR, “No DR” accounts for approxi-
mately 45.8%, while in DeepDR, it makes up around 45.7%.
In Messidor-2, the “No DR” class represents about 58.2% of
the total data.
The domain shift of datasets. Each dataset is treated as a
distinct domain, with significant variations from factors like
country of origin, patient demographics, and differences in
imaging equipment used for acquisition. Additionally, analy-
sis of the RGB statistics for proliferative DR (PDR) samples
across these datasets/domains reveals distinct fluctuations in



Table 2. Performance of test time adaptation methods evaluated in ACC, QWK, and AVG across different batch sizes

Method ACC QWK AVG
Source 53.9 60.1 57.0

Test Time Adaptation Batch Size Test Time Adaptation Batch Size Test Time Adaptation Batch Size
2 4 8 16 32 64 Avg. 2 4 8 16 32 64 Avg. 2 4 8 16 32 64 Avg.

SHOT-IM [4] 44.9 54.2 58.5 58.0 59.2 59.0 55.6 60.8 60.9 62.0 63.2 64.4 64.7 62.7 52.8 57.5 60.0 60.8 61.8 61.9 59.1
TENT [7] 56.3 57.1 57.8 58.8 59.7 59.3 58.2 25.1 30.2 39.7 47.2 54.1 59.2 42.6 40.7 43.6 48.7 53.0 56.9 59.3 50.4
SHOT-IM+GUES 60.0 60.9 61.4 61.5 61.4 62.0 61.2 64.7 65.2 65.6 65.8 66.1 66.9 65.7 62.4 63.1 63.5 63.6 63.7 64.5 63.5
TENT+GUES 60.6 61.0 61.3 61.2 61.1 61.0 61.0 62.5 62.3 62.2 62.4 62.5 63.3 62.5 61.5 61.7 61.8 61.8 61.8 62.2 61.8

Figure 3. Visualization for input images, generative perturbations, and RGB statistic of the corresponding perturbations on transfer task
DDR→APTOS.

each channel (R, G, and B), highlighting the unique visual
styles and characteristics of each dataset, as shown in Fig. 2.

3. Evaluation metrics

The computation rules for accuracy (termed ACC), Quadratic
Weighted Kappa (termed QWK), and the average of QWK
and ACC (termed AVG) are as follows.

ACC =
TP + TN

TP + TN + FP + FN
,

QWK = 1−
∑n

i=1

∑n
j=1 W (i, j) ·O(i, j)∑n

i=1

∑n
j=1 W (i, j) · E(i, j)

, Wi,j =
(i− j)2

(C − 1)2

AV G =
1

2
(ACC +QWK) ,

(25)
where TP , TN , FP , and FN represent true positives, true
negatives, false positives, and false negatives, respectively. i
is a true category, j is a predicted category, C is the number
of classes, and n is the total number of samples. O(i, j) is
the observed frequency, which represents how many times
the true category i was predicted as category j, and E(i, j)
is the expected frequency, which indicates how many times
category i would be predicted as category j under random
guessing, E(i, j) = P (i)× P (j)× n.

4. Supplementary Experiment Results

4.1. Results with Varying Batch Size

As a supplement to the results with varying batch sizes, Ta-
ble 2 presents the complete performance of three evaluation
metrics across all 12 tasks. TTA methods SHOT-IM and
TENT show a performance drop when the batch size is small.
Specifically, SHOT-IM decreases by approximately 14.1%
in ACC, 3.9% in QWK, and 9.1% when comparing batch
sizes of 2 and 64. TENT decreases by approximately 3.0%
in ACC, 34.1% in QWK, and 18.6% when comparing batch
sizes of 2 and 64. However, when these methods are com-
bined with our proposed method, GUES, the decline is not
as significant. In SHOT-IM+GUES, the performance shows
a decrease of only 2.0% in ACC, 2.0% in QWK, and 2.1% in
AVG. In TENT+GUES, the performance shows a decrease of
only 0.4% in ACC, 0.8% in QWK, and 0.7% in AVG. These
results indicate that our method can prevent declines when
the batch size is small, as it predicts individual perturbations
that are robust to batch size variations.

4.2. Visualization for Generative Perturbations

As depicted in Fig. 3, it is evident that different input images
exhibit distinct perturbations, as observed directly in the sec-



(a) Fundus image (b) Natural image (d) Natural image
saliency map

(e) Amplitude spectrum(c) Fundus image
saliency map 

Figure 4. Visualization of a fundus image, a natural image, and their corresponding saliency maps. The fundus image is sampled from
APTOS, and the natural image is sampled from Office-Home [6]. In (e), the amplitude spectrum of these four images is displayed.

ond row. To be more specific, the RGB distribution of the
perturbations, illustrated in the third row, further highlights
their variability. This analysis demonstrates how GUES dy-
namically adjusts the perturbations to account for the unique
characteristics of each input image, effectively tailoring them
to align with the target domain.

4.3. Why are Saliency Maps Unsuitable for Natural
Images?

As we early stated, the proposed method cannot tackle the
natural image scenarios well. This part executes a further
discussion for this issue using two typical images illustrated
in Fig. 4 (a) and (b). There are two key observations to
note. First, the fundus image has a simpler background
and structure compared to the natural image, which features
richer semantics, including diverse shapes, complex relative
structures, and intricate backgrounds. This difference is
reflected in the amplitude spectrum in Fig. 4(e), where the
fundus image displays a significantly lower frequency band.
Second, the saliency maps effectively highlight variations
in both fundus and natural images. This is indicated by the
fact that the amplitudes of the saliency maps are much larger
than the corresponding amplitudes of the images at similar
frequencies.

The effects of this enhancement differ between fundus
images and natural images. For simpler fundus images, the
noticeable variations are typically related to lesions, mak-
ing the enhancement useful for highlighting these specific
regions (see Fig. 4 (c)). In contrast, complex natural images
exhibit variations that span the entire scene, such as areas
of forest, grass, shadows, and a person riding a bike. In
this case, the enhancement draws attention to all elements
in the image, which can obscure the factors that are relevant
to the task at hand. Therefore, we believe that refining a
proper self-supervised signal for natural images represents a
promising research direction for the future.

Table 3. Inference time comparison (per-image) on DDR→APTOS.

Method SHOT-IM TENT SAR GUES

Time (ms) 11.9 5.6 24.1 14.7

4.4. Comparison of Training Time

As shown in Tab. 3, GUES demonstrates an average speed
among the competitors. The primary reason GUES is not the
fastest is that the VEA model inherently requires more train-
ing time than the ResNet50 model. Specifically, the VEA
model’s loss function is based on reconstruction loss, which
is computationally intensive, whereas ResNet50 handles
classification tasks using cross-entropy loss, which is more
computationally efficient. Furthermore, the VEA model’s
decoder typically takes low-dimensional latent representa-
tions as input and decodes them into high-resolution images
through multiple layers. This process is significantly more
computationally demanding compared to ResNet50, which
directly processes raw image features. Therefore, the train-
ing time of GUES is relatively longer.
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