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1. Overall Evaluation

To emphasis that our method can simultaneously improve
imaging quality and temporal consistency, an overall score
is necessary for consider multiple metrics. As shown in Ta-
ble 11 in the main paper, we calculate an Overall score by
averaging the normalized values of four scores. Our method
achieve the highest score. Note that the normalization range
is derived from the VBench LeaderBoard2, DOVER3 and
Aesthetic Predictor (AP) V2.54. The ranges [min,max] are
as follows:
• MS: [0.9179, 0.9958].
• SC: [0.8624, 0.9833].
• DOVER: [55.1690, 88.3000], where 88.3000 is the score

on a real world video dataset, and 55.1690 is the VC2
original video score.

• AP: [0, 5.5]: according to the Aesthetic Predictor V2.5
project, 5.5+ is considered to be a high aesthetic score.

Then, we leverage min-max normalization to compute the
scores. The normalized scores are shown in gray in Table 1.

Temporal (↑) Imaging (↑) Overall (↑)
MS SC DOVER AP

VC2-ori 0.9829 0.9738 55.1690 4.4975 -
0.8344 0.9214 0.0000 0.8177 0.6436

Rerender 0.9820 0.9745 76.3923 5.2979 -
0.8228 0.9272 0.6406 0.9633 0.8385

TokenFlow 0.9696 0.9786 64.4664 4.3898 -
0.6637 0.9611 0.2808 0.7981 0.6759

BIVDiff 0.9885 0.9801 64.6217 5.0599 -
0.9063 0.9727 0.2855 0.9182 0.7707

Ours 0.9881 0.9808 73.1997 5.4632 -
0.9012 0.9793 0.5443 0.9933 0.8545

Table 1. Normalized scores reported in Table 1.

2. Ablation Studies

In the main paper, Figure 6 illustrates a case study demon-
strating the influence of tV and tT2V. In this section, we con-
duct comprehensive hyperparameter searching on subset of
20 videos with obvious low imaging quality or temporal in-
consistency problem.

1Red represents the numbering in the main paper.
2https://huggingface.co/spaces/Vchitect/VBench Leaderboard
3https://github.com/VQAssessment/DOVER
4https://github.com/discus0434/aesthetic-predictor-v2-5

2.1. Hyperparameter Analysis

There are four hyperparameters mentioned in the EVS algo-
rithm (Algorithm 1):

• tI(sI = tI/TI): T2I model noising timestep. Larger tI im-
plies larger noise strength. For the goal of imaging qual-
ity enhancement, tI = 0.4 is an optimal choice. Conse-
quently, we have fixed sI = 0.4 in our experiments.

• tV(sV = tV/TV): T2V model noising timestep. A larger
tV (larger noise strength) can more effectively eliminate
inconsistencies and induce a tendency for frames to con-
verge excessively towards the T2V imaging distribution.
We try sV ∈ [0.4, 0.3, 0.2].

• tT2V: Timestep of switching to the [T2V] block during
T2I denoising steps. A larger value of tT2V (indicating
earlier injection of the T2V block during T2I) allows for
more timesteps to be available for T2I, resulting in im-
proved imaging quality but increased inconsistency. For
TI = 30 setting, we try tT2V ∈ [4, 8, 12].

• nV: Number of denoising steps for the [T2V] block.
Additional steps yield a more accurate prediction of z0.
However, this is not essential, as the imaging quality is
primarily influenced by the T2I denoising processes. We
utilize the predicted z0 as a bridge back to T2I denoising
steps. For TV = 8 setting, we try nV ∈ [1, 2].

As shown in Table 2, the best hyperparameter combina-
tion is tT2V = 8, sV = 0.4, nV = 2. The larger sV at 0.4
contributes to improved imaging quality because, despite
employing T2V AnimateDiff-Lightning and AnimateLCM
for temporal smoothing, these methods also yield high-
quality imaging as a complementary benefit.

We can utilize the [T2V] block multiple times during the
T2I denoising process to explore its potential for further im-
proving temporal consistency. In extreme situations, we can
implement this approach at each T2I denoising step. As
shown in Figure 1, motion smoothness is determined by the
last timesteps of applying the [T2V] block. Multiple appli-
cations (e.g., [8, 4], [12, 8, 4], or even at every step [12,
11, ..., 5, 4]) yield minimal improvement over [4] compared
to the original video (orange dots), but incur an obvious in-
crease in computational cost (gray bar). The same situa-
tion applies for the last timestep with tT2V = 8 (blue dots).
The last timestep with tT2V = 4 demonstrates overall bet-
ter performance compared to tT2V = 8. This confirms our
statement that the final temporal consistency of the video is
greatly affected by the timing of the last application of the
[T2V] block.



AnimateDiff-Lightning AnimateLCM
Temporal (↑)) Imaging (↑)) Overall (↑)) Temporal (↑)) Imaging (↑)) Overall (↑))

tT2V/TI sV, nV MS SC DOVER AP MS SC DOVER AP
4/30 0.4, 1 0.9875 0.9694 82.6544 5.7069 0.9114 0.9818 0.9662 81.9452 5.5904 0.8759

0.4, 2 0.9892 0.9708 83.0662 5.7434 0.9246 0.9831 0.9672 83.126 5.6014 0.8915
0.3, 1 0.9840 0.9668 82.6351 5.6788 0.8934 0.9781 0.9653 81.8139 5.5555 0.8596
0.3, 2 0.9872 0.9692 84.0331 5.6975 0.9200 0.9797 0.9652 81.7247 5.575 0.8647
0.2, 1 0.9763 0.9635 83.2453 5.6354 0.8645 0.9731 0.9633 81.7129 5.5243 0.8372
0.2, 2 0.9790 0.9646 83.7943 5.6611 0.8807 0.9744 0.9637 81.7996 5.5421 0.8437

8/30 0.4, 1 0.9853 0.9682 85.0420 5.7229 0.9206 0.9801 0.9658 84.3118 5.5921 0.8875
0.4, 2 0.9874 0.9692 86.0847 5.7689 0.9394 0.9813 0.9667 84.6802 5.6165 0.8971
0.3, 1 0.9804 0.9645 85.5730 5.6845 0.8995 0.9753 0.9642 83.7512 5.557 0.8630
0.3, 2 0.9841 0.9663 86.0717 5.7050 0.9198 0.977 0.9649 83.5828 5.5788 0.8696
0.2, 1 0.9732 0.9615 84.6851 5.6385 0.8614 0.9705 0.9619 84.3654 5.5253 0.8460
0.2, 2 0.9758 0.9617 84.8961 5.6666 0.8730 0.9718 0.9616 83.7408 5.5437 0.8457

12/30 0.4, 1 0.9816 0.9651 86.3023 5.7171 0.9116 0.9753 0.9641 83.9006 5.5737 0.8647
0.4, 2 0.9846 0.9672 86.2330 5.7501 0.9265 0.9774 0.9648 84.8727 5.5847 0.8807
0.3, 1 0.9753 0.9617 85.1262 5.6833 0.8739 0.9698 0.9609 83.5959 5.552 0.8371
0.3, 2 0.9800 0.9647 86.4288 5.7019 0.9059 0.9718 0.9625 84.1262 5.5736 0.8518
0.2, 1 0.9670 0.9609 83.9691 5.6380 0.8349 0.9644 0.9597 82.9156 5.523 0.8109
0.2, 2 0.9706 0.9617 85.3942 5.6664 0.8601 0.9662 0.9608 83.9166 5.5404 0.8272

Table 2. The influence of [T2V] block hyperparameters on two T2V base models.

Figure 1. Multiple [T2V] blocks (e.g., [8, 4], [12, 8, 4]) yield
minimal MS improvement over [4], but incur an obvious increase
in time cost. The last timestep with tT2V = 4 demonstrates overall
better performance compared to tT2V = 8.

2.2. Selective Feature Injection Analysis

In this section, we analyze the strategy of Selective Feature
Injection (SFI), focusing specifically on its ability to lever-
age the temporal priors of the T2V model. As shown in
Figure 2, a basic upsample layer of U-Net in AnimateDiff
consists of three parts:
• ResNet: It takes the previous features from the downsam-

ple blocks of the U-Net, concatenates them with the cur-
rent features, and then applies convolution. There are to-
tally 12 layers as shown in the bottom of Figure 3.

• Spatial: Similar to Stable Diffusion, it incorporates Self-
Attention (SA), Cross-Attention (CA), and a Feed For-
ward (FF) Network. There are totally 9 layers, the deepest

3 layers do not have spatial attention modules.
• Temporal: It integrates two SA modules along the tem-

poral dimension, allowing it to aggregate features across
different frames at the same spatial coordinates. There are
totally 12 layers.
Given a video that has been processed on a frame-by-

frame basis using T2I blocks, we employ the DDIM in-
version of the T2V model and gather intermediate features
from the aforementioned modules. These features can be in-
jected at the input and output of every module to establish an
upper limit for reconstruction, serving as a starting point for
further optical points of partial reconstruction. Each mod-
ule incorporates a skip-connection structure. Injecting at
the input (indicated by the orange arrow in the figure) com-
pletely halts the flow of information, thereby preventing the
incorporation of temporal priors. Therefore, we choose to
inject at the output (as indicated by the blue arrow in the
figure). We number all possible injection places with num-
bers ① to ⑦. [2] injects attention features at ②. They con-
duct experiments and discover that Self-Attention (SA) in
the deeper layers of U-Net effectively captures the struc-
tural information of an image. PnP [3] additionally injects
features at ① at deeper U-Net layers for better preservation
of structural information. For video diffusion models, re-
construction poses significant challenges, largely due to the
limitations in training data and the inherent denoising capa-
bilities of the model. Additionally, incorporating extra tem-
poral modules creates more potential places for us to inject
features.

Figure 3 illustrates the reconstruction PSNR for different
layer IDs (representing injection from layer 0 to each spec-
ified layer) at the seven output locations above. Directly



𝑞!"

𝑘!"

𝑣!"

SA CA

“text”

+ + + 

FF

𝑓!" − S

SpatialResnet

𝑞!"

𝑘!"

𝑣!"

SA SA

+ + + 

FF

𝑞!"

𝑘!"

𝑣!"

Temporal

2 4 5 7	𝑋!"

+ 
1

𝑓!" 𝑓!" − T
		𝑋#$%&

From
DownSampling

Blocks

𝑞!"

𝑘!"

𝑣!"
3 6

input output

Figure 2. Illustration of a basic upsample block in the T2V model (a.k.a, layer), which consists many skip-connections. We number the
places where we can inject the features. One can inject feature at input or output, while injecting features at input will totally prevent
previous features be transport to the current position.

injecting at the shallowest ResNet layer reaches the upper
limit of reconstruction. However, injecting at ResNet layers
results in a steady increase at the last two layers. This makes
it challenging to identify an optimal balance. Injecting at
either the spatial or temporal layer yields a smooth incre-
ment. The spatial layer achieves a higher PSNR. Therefore,
we have chosen the spatial layer as the preferred injection
location (②). Starting from injecting into all spatial lay-
ers, we identify optimal points to balance the preservation
of imaging quality with the introduction of temporal prior,
as shown in Figure 8 in the main paper. For visualization
results on stylized video from VBench, see Figure 4.
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Figure 3. Seletive Feature Injection (SFI) at different module out-
put (① to ⑦) and layers (totally 12 layers).

3. More Results
3.1. More Baselines

Figure 5 presents a visualization of four additional base-
lines. FRESCO improves the use of optical flow for feature
propagation compared to Rerender-A-Video. However, the
performance is ultimately constrained by inconsistencies

present in the original video. TokenFlow combined with
PnP [3] editing leverages feature matching derived from the
inverted source video with greater accuracy. However, this
approach results in reduced editability when compared to
SDEdit. As illustrated on the right side of Figure 5, the
color inconsistency of the car persists and cannot be effec-
tively resolved. RAVE [1], proposes the randomized noise
shuffling method, suffering the issue of flickering fine de-
tails. AnyV2V, even with an increased number of inver-
sion steps (ranging from 100 to 500), does not demonstrate
improved performance. The I2V model struggles to fully
propagate the edits made to the first frame into the subse-
quent frames because it must integrate features such as PnP
to maintain the original video’s motion. This necessity in-
advertently introduces original imaging content. Figure 6
presents another two case studies.

3.2. Combined with Developing T2V Base Models.

With increasingly advanced architectural designs and the in-
clusion of more training videos, both motion quality and
imaging quality have demonstrated continuous improve-
ment. However, when video datasets predominantly com-
posed of real-world scenes are used, training T2V mod-
els inevitably leads to a lower capacity for image genera-
tion compared to T2I models. Even though models such
as CogVideoX and HunyuanVideo achieve high aesthetic
scores for common life scenes, they sacrifice the under-
standing of text prompts related to imaginary scenarios
(e.g.astronaut riding horse) or complex visual descriptions
(e.g.style of VanGogh). As demonstrated in VBench (Up to
January 2025), VideoCrafter-2.0 still outperforms all other
T2V models, including closed-source ones, in terms of Ap-
pearance Style (image-text CLIP similarity). There still re-
mains potential for enhancing imaging quality across these
diverse scenarios as T2I models continue to be improved.
We provide the result of CogVideoX-5B in combination
with our EVS in Figure. 3. For HunyuanVideo/closed-
source, their high-quality realistic video generation can fur-
ther be integrated with our EVS editing framework to ad-
dress current limitations in uncommon style understanding.
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Figure 4. DDIM with Selective Feature Injection (SFI) vs. SDEdit with varying noising strengths. For stylized videos that lie outside the
imaging domain of the T2V model, a balanced noising point is absent. Notably, between tV = 4 to tV = 5, there is a sudden loss of
stylization. In contrast, our DDIM with SFI effectively preserves the stylization while mitigating inconsistencies.

In the next section, we will demonstrate editing ability of
EVS.

MS (↑) SC (↑) DOVER (↑) AP (↑) DD (↑)
CogVideoX-5B 0.9749 0.9548 54.26 4.63 0.5667

CogVideoX-5B+RV 0.9818 0.9659 56.53 5.29 0.5652

Table 3. CogVideoX generated video from VBench combined
with RealisticVisionV60B1 (RV) under our EVS framework.

3.3. Video Editing

Our approach to the generative video quality enhance-
ment task can also be applied to real-world video editing,
or API generated video post-processing tasks. Figures 7
and 8 present the results of two classic case study datasets.
The baseline results, with the exception of AnyV2V, were
sourced from the FRESCO webpage. In Figure 7, our
method demonstrates superior consistency in detail, partic-
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Figure 5. Blue indicates newly added visualization compared with Figure 5 in the main paper.

ularly highlighted in the zoomed-in red box where the nail
is located. In Figure 8, the baselines select frames from
the original video at intervals of 5. As a result, the motion
between frames is discontinuous and falls outside the mo-
tion domain of the T2V model. Nonetheless, directly apply-
ing T2V smoothing demonstrates superior motion smooth-
ness compared to most baseline methods, particularly in the
background (as highlighted by the zoomed-in yellow line,
our video exhibits noticeably fewer flickers).
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superior consistency of our methods. Notably, TokenFlow fails to capture the finger in the source video.
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