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A. Coordinates Transformation

A.1. LiDAR⇔Ego-Vehicle

LiDAR to Ego-Vehicle: (xv, yv, zv) represents a
three-dimensional coordinate point in Ego-Vehicle Co-
ordinate System. The transformation from the coordi-
nates (xv, yv, zv) in the Ego-Vehicle Coordinate System to
(xl, yl, zl) in the LiDAR Coordinate System is calculated as
follows: 
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where RL ∈ R3×3 and TL ∈ R3×1 represent the rotation
and translation from the Ego-Vehicle Coordinate System to
the LiDAR Coordinate System, respectively.

Ego-Vehicle to LiDAR: The transformation from Ego-
Vehicle Coordinate System to LiDAR Coordinate System
is the inverse transformation of Eq.(1).

A.2. LiDAR⇔Camera

LiDAR to Camera: Regardless of whether it is a fisheye
or a pinhole camera, the coordinate transformation formula
from the LiDAR Coordinate System to the Camera Coordi-
nate System is the same and is given as follows:
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where (xc, yc, zc) represents a three-dimensional coordi-
nate point in the Camera Coordinate System. RC ∈ R3×3

and TC ∈ R3×1 represent the rotation and translation from
the LiDAR Coordinate System to the Camera Coordinate
System, respectively.

Camera to LiDAR: The transformation from Camera
Coordinate System to LiDAR Coordinate System is the in-
verse transformation of Eq.(2).

A.3. Camera⇔Pixel

Camera to Pixel: The projection formulas of different
types of cameras are different in the RoboSense dataset, the

projection formula of a pinhole camera is as follows:
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(u, v) is pixel coordinate, K ∈ R3×1 represents the camera
intrinsic parameters, (fx, fy) represents the focal lengths of
the camera, and (u0, v0) indicates the displacement of the
camera’s optical center from the origin of the Pixel Coordi-
nate System. The projection formula from camera coordi-
nate to pixel coordinate of the fisheye camera is very differ-
ent, the camera projection process refers to the projection
formula of Omnidirectional Camera (OCam) in [27].

Pixel to Camera: The transformation from Pixel Coor-
dinate System to Camera Coordinate System in a pinhole
camera model requires the inverse of Eq.(3). Since this is a
2D to 3D transformation, it is necessary to first determine
the magnitude of zc. The projection formula from pixel co-
ordinate to camera coordinate of the fisheye camera refers to
the projection formula of Omnidirectional Camera (OCam)
in [27].

A.4. Ego-Vehicle⇔Global

Ego-Vehicle to Global: RG ∈ R3×3 and TG ∈ R3×1

represent the transformation matrices of the vehicle’s ori-
entation and position in the Global Coordinate System, re-
spectively. The transformation formula for converting the
coordinates (xv, yv, zv) in the Ego-Vehicle Coordinate Sys-
tem to (xg, yg, zg) in the Global Coordinate System is as
follows: 
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Global to Ego-Vehicle: The transformation from Global
Coordinate System to Ego-Vehicle Coordinate System is
the inverse transformation of Eq.(4).

B. More Details of RoboSense
B.1. Annotation Statistics

We present more statistics on the annotations of RoboSense
as shown in Tab. 8. It can be observed that our Ro-
boSense dataset contains approximately 1.4M annotated



Table 8. The Number and proportion of 3D Boxes from all sensors (Global Scenes) and Livox LiDAR (Local Scenes) per category under
different ranges (m) respectively.

Global/Local Vehicle Cyclist Pedestrian Total[0 - 10] [10 - 30] [30 - ] [0 - 10] [10 - 30] [30 - ] [0 - 10] [10 - 30] [30 - ]

Global
(Hesai LiDAR)

165K 402K 343K 23K 38K 15K 187K 163K 51K
1.4M

910K 76K 401K
65.00% 5.42% 28.64% 100%

Local
(Livox LiDAR)

150K 282K 133K 20K 28K 7K 163K 103K 21K
907K

565K 55K 287K
40.36% 3.93% 20.50% 64.79%

Figure A1. Comparison of annotated object distribution of different classes between RoboSense and nuScenes datasets.

objects, with vehicles and pedestrians comprising the ma-
jority, while cyclists are lesser. The distribution of objects is
relatively uniform in terms of distance. Additionally, due to
the smaller coverage area of Livox pointclouds (Local view)
compared to Hesai pointclouds (Global view), the num-
ber of annotated objects in the Livox pointclouds is only
64.79% of that in the Hesai pointclouds. In Fig. A1, we fur-
ther compare the distribution of annotated objects between
our Robosense dataset and nuScenes dataset. It is obvious
that our Robosense dataset contains significantly more an-
notated objects of vehicles, pedestrians, and cyclists classes
respectively, which tend to be closer to the ego robot.

B.2. 3D Object Label Generation

To generate high-quality 3D object annotations, we design a
three-stage 3D object generation pipeline for different sen-
sors covering various ranges. First, a pre-trained LiDAR
detection model (i.e., [15]) of high precision is adopted to
produce 3D objects on the full 360◦ view using high-quality
Pandar64 points as input. Then expert annotators are re-
quired to refine the initial 3D boxes continuously through-

out the whole sequences in each scene, based on splicing
pointclouds which are obtained by aligning 4 vehicle-side
LiDARs to the Ego-Vehicle coordinate through affine trans-
formation. Besides, annotators need to supplement sur-
rounding 3D boxes in a near range which are not scanned
by the top Hesai LiDAR or fail to be detected owing to high
occlusion and truncation. Last but not least, invalid 3D an-
notations should be excluded for target LiDAR coordinate
and Camera coordinate respectively, where the annotated
objects are not covered in the corresponding sensor data.
Through multiple validation steps, highly accurate annota-
tions can be achieved in both near and far ranges. We also
release intermediate Pandar64 points for research usages.

B.3. Occupancy Label Preprocess

Occupancy label generation can be primarily divided into
two parts: pointclouds densification and occupancy label
determination. Unlike existing counterpart [33] which only
utilizes the sparse keyframe LiDAR points, multi-frame ag-
gregation operation is found to be indispensable for dense
occupancy generation. For dynamic objects, the extracted



Table 9. 3D Detection results of different modalities on validation sets of RoboSense using IoU as matching criteria.

Task Method Vehicle@IoU=0.7/0.3 Cyclist@IoU=0.5/0.3 Pedestrian@IoU=0.5/0.3
3D AP↑ AOS↑ ASE↓ 3D AP↑ AOS↑ ASE↓ 3D AP↑ AOS↑ ASE↓

LiDAR 3D
Detection

PointPillar [15] 43.7 45.5 13.3 39.5 39.6 69.2 52.6 36.6 34.9
SECOND [39] 55.8 59.8 17.2 52.3 53.3 65.9 61.7 46.9 37.5
PVRCNN [29] 53.5 57.9 16.9 53.0 50.7 55.9 58.9 43.4 38.4

Transfusion-L [1] 65.8 66.3 17.3 59.3 71.0 78.5 67.1 56.0 42.7

Multi-view 3D
Detection

BEVDet [12] 32.1 21.8 10.4 19.9 21.2 36.8 25.9 29.7 20.3
BEVDet4D [11] 33.5 22.8 10.4 20.1 21.1 36.7 26.2 28.3 17.7
BEVDepth [16] 33.4 22.8 10.2 22.6 22.2 41.6 27.7 28.1 17.9
BEVFormer [17] 33.6 23.0 10.3 23.4 22.1 35.3 28.0 29.5 17.8

(a) Densified points without ICP (b) After ICP registration (c) Sparse vs. Dense keyframe points

Figure A2. Illustration of ICP and points densified process.

dynamic points of neighboring frames are subsequently
concatenating for each object along the corresponding tra-
jectory respectively, thus achieving the pointclouds densifi-
cation. For static scenes, coordinate transformation is per-
formed from the ego-vehicle coordinate to the global co-
ordinate across time using ego-pose information, and then
simply aggregate all static points on the ego-vehicle coordi-
nate of current keyframe through concatenation.

Notably, owing to the complex driving scenarios with
uneven ground and rapid pose changes especially when
turning directions to avoid obstacles during data collec-
tion, pose drifts are observed in the IMU data. Therefore,
the temporal aggregation results of pointclouds are inferior
with misaligned horizon and ego-motion blur as shown in
Fig. A2. To relieve these issues, ICP (Interative-Closed-
Point) [28] is conducted additionally for static scene points
registeration before multi-frame aggregation. Finally, den-
sified pointclouds for a single frame can be obtained by fus-
ing the static scenes with the dynamic objects.

Given dense points of a specific scene, we label all vox-
els within a fixed range by a resolution of 0.5m × 0.5m,
based on the height of majority points inside each voxel.
If the height is larger than a threshold σ, the voxel state is
set to “occupied”, otherwise “free”. Moreover, consider-
ing the occlusion and truncation situations, some occupied
voxels are not scanned by LiDAR beams and camera views
actually. Hence we set part of voxels to “unknown” state
which are invisible from both the LiDAR and camera views
through tracing the casting ray.

Figure A3. Distribution of data collection scenarios in RoboSense
dataset in Google Map.

B.4. Metric Comparison

In addition to the evaluation of 3D detection results with
the proposed matching criteria (Center-Point distance and
Closest Collision-Point distance), we also provide the cor-
responding evaluation results using the traditional 3D IOU
(Intersection-Over-Union) matching criteria for compari-
son, as shown in Tab. 9. It is obvious that without distance
differentiation, the evaluation results of 3D AP for both
LiDAR-based and Camera-based methods are all in a low
level, which can not reflect the objective performance and
fail to satisfy the practical application requirements of the
detection model. However, the proposed matching criterion
is designed to measure the locating capability of closest col-
lision points of nearby obstacles, which is more challenging
and essential for low-speed driving scenarios.

B.5. Scene Distribution

Our RoboSense dataset contains 7.6K sequences, cover-
ing 6 main categories (including 22 different locations) of
outdoor or semi-closed scenarios (i.e., S1-parks, S2-scenic
spots, S3-squares, S4-campuses and S5-sidewalks or S6-
streets). Fig. A3 illustrates the scene distributions of our
collected data constructed for RoboSense dataset, which
are surrounding Dishui Lake in Shanghai, China, with sev-
eral markers drew in Google Map indicating the main lo-
cations performed data collection. Besides, the illustrations
for each representative scenario among the collected loca-
tions are shown in Fig. A4-A9 respectively.
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Figure A4. The illustration of S1-parks in Sequence-4906 at the 3-rd frame.
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Figure A5. The illustration of S2-scenic spots in Sequence-1491 at the 13-th frame.
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Figure A6. The illustration of S3-squares in Sequence-396 at the 2-nd frame.
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Figure A7. The illustration of S4-campuses in Sequence-2257 at the 16-th frame.
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Figure A8. The illustration of S5-sidewalks in Sequence-2990 at the 10-th frame.
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Figure A9. The illustration of S6-streets in Sequence-7018 at the 2-nd frame.
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