
SAT-HMR: Real-Time Multi-Person 3D Mesh Estimation via
Scale-Adaptive Tokens

Supplementary Material

In Sec. A.1, we elaborate on the implementation details
of our proposed method and the experimental setups. We
provide additional results and extended discussions in Sec. B.

A. Implementation Details
A.1. Model Architecture
Encoder-decoder design. Our model follows an encoder-
decoder design based on previous works [2, 23], with the
vanilla encoder replaced by our proposed scale-adaptive
encoder. For the decoder, following [23], human queries
consist of two learnable components: the content part and
the positional part, also known as decoder embeddings and
anchor boxes [23]. Following [23], anchor boxes are refined
layer-by-layer by predicting residual values via a prediction
head. Additionally, we initialize mean SMPL pose and shape
parameters used in [2, 11, 16] and update them with a sim-
ilar procedure, as illustrated in Fig. A1. Predictions of 3D
translation t are regressed from updated decoder embeddings
without iteratively updating, which is not included in Fig. A1.
Finally, all human predictions are matched to GTs before
computing training losses. We adopt the Hungarian algo-
rithm following previous works [5, 44]. The matching cost
is computed as a weighted sum of Lbox, Ldet, and Lj2d, with
the weights sharing the same values as those in Sec. A.2.

Camera model. To leverage 2D annotations for supervision,
we adopt a pinhole camera model to project 3D joints onto
the image plane. Given the focal length f and principal
point (pu, pv), a 3D point (x, y, z) is projected to the image
coordinates (u, v) as follows:

u =
f × x

z
+ pu, v =

f × y

z
+ pv. (A1)

Following [2, 46], we assume a standard camera with a
fixed field of view (FOV) of 60◦. Given Shr as the longer
side of the image, the focal length is predefined as f =
Shr/(2 tan (FOV/2)). The principal point (pu, pv) is lo-
cated at the center of the image.

A.2. Training
The confidence and scale thresholds corresponding to the
scale map are set to αc = 0.3 and αs = 0.5, respectively.
The loss weights are set to λmap = 4, λdepth = 0.5, λpose = 5,
λshape = 3, λj3d = 8, λj2d = 40, λbox = 2 and λdet = 4. We
train our model with AdamW [25], with weight decay set to
1e−4. The initial learning rate for the pretrained parameters
is set to 2e− 5, while for other parameters, it is set to 4e− 5.

The model is trained for 60 epochs with a total batch size of
40, which takes around a week on 8 RTX 3090 GPUs.

A.3. Datasets
We briefly introduce the datasets used for training or evalua-
tion.

AGORA [33] is a synthetic dataset known for its high real-
ism and diverse scenarios. Due to its highly accurate GTs
annotated in both SMPL [24] and SMPL-X [34], AGORA
has become an essential benchmark for evaluating 3D hu-
man mesh estimation models. It contains approximately 14K
images with 107K instances for training, 1K images with 8K
instances for validation, and 3K images for testing.

BEDLAM [3] is a large-scale, synthetic video dataset that
includes a diversity of body shapes, motions, skin tones,
hair, and clothing. The dataset contains approximately 286K
images with 951K instances for training and 29K images
with 96K instances for validation. For our ablation study,
we uniformly downsample the training set by a factor of 6,
resulting in 48K images with 159K instances. We do not
use the test set because the SMPL format is not currently
supported by the leaderboard.

COCO [20], Crowdpose [17], and MPII [1] are real-world
multi-person datasets widely used for 2D human pose esti-
mation tasks. We use these datasets for training to enhance
the generalization capability of our model on real-world im-
ages by using pseudo annotations from NeuralAnnot [31]
and only supervise projected 2D joints due to 3D ambigu-
ity and their label noisiness. We uniformly downsample
COCO by a factor of 4, resulting in 16K images with 66K
instances for training. For Crowdpose, we use 10K images
with 36K instances, and for MPII, we use 17K images with
29K instances.

H3.6M [13] is an indoor single-person dataset with 3D pose
annotations. It contains videos of common activities per-
formed by professional actors. We uniformly downsample
its training set by a factor of 10 and use 31K images.

3DPW [49] is an in-the-wild dataset with 3D mesh annota-
tions. It contains approximately 17K images for training and
24K images for testing. Following [2, 45, 46], we use the
training set to finetune our model before evaluating the test
set.

MuPoTS [29] is a real-world multi-person 3D pose dataset
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Figure A1. Illustration of our decoder architecture. Queries consist of decoder embeddings and anchor boxes following DAB-DETR [23].
Besides updating anchor boxes, we also update SMPL parameters using corresponding prediction heads.

Table A1. Speed-accuracy trade-off among different ablation settings. We conduct our studies on BEDLAM [3] validation set, reporting
the average number of different tokens, inference runtime and MVE.

Ablation
Number of tokens

Runtime (ms) MVE ↓
High-resolution Low-resolution Background

Single Resolution
(a) Res. 1288 4784 174.9 53.2
(b) Res. 644 1196 42.3 63.3

Background Tokens TB

(c) Drop all 493 40 0 39.7 57.2
(d) No pooling 493 1073 54.1 56.1
(e) Pooling×2 493 94 100 41.6 56.3
(f) Ours 493 94 245 42.0 56.0

composed of more than 8K frames from 20 scenes, each
containing up to three subjects, annotated with 3D pose.
Following previous works [2, 46], we only use it to evaluate
the generalization capability of our model.

CMU Panoptic [15] is an indoor multi-person dataset pro-
viding 3D pose annotations. It contains 4 sequences of multi-
ple people engaging in different social activities, with approx-
imately 9K images. Following previous works [2, 45, 46],
we only use it to evaluate the generalization capability of our
model.

B. Extended Results
B.1. Ablation Study
Speed-accuracy trade-off. We evaluate the speed-accuracy
trade-off across various ablation models. Specifically, we

compare single-resolution baselines with our model, which
adopts different processing strategies for background tokens
(TB). In Tab. A1, we report the average number of tokens,
inference runtime, and the MVE metric on BEDLAM [3]
validation set. The average number of tokens is included to
highlight the impact of image tokens on inference speed.

In ablation (a), our baseline model with a resolution of
1288 achieves the lowest estimation error but suffers from
redundant image tokens, leading to extremely slow inference.
In contrast, ablation (b) shows faster inference but with poor
performance, i.e. much higher MVE. In (d), simply replacing
small-scale tokens with their high-resolution counterparts
brings a noticeable boost in performance with additional
overhead, where some low-resolution tokens are still redun-
dant. In (f), our proposed method of pooling background
tokens TB once counteracts the overhead brought by high-



Table B2. Effect of resolution. We study the impact of resolution
using both single-resolution (baseline) and mixed-resolution (our
method, with “*”) settings on AGORA [33] and BEDLAM [3],
reporting MVE for different scale ranges and the average (Avg.).

Res. 0-30% 30-50% 50-70% 70%+ Avg.

B
E

D
L

A
M

644 65.1 61.0 58.4 64.6 63.3
896 57.8 54.7 54.7 59.3 56.5

1288 55.2 50.4 51.6 56.0 53.2
448* 60.3 60.3 61.0 68.6 60.5
644* 55.6 56.0 57.6 63.1 56.0
896* 51.1 51.3 53.7 58.6 51.4
Res. 0-10% 10-20% 20-30% 30%+ Avg.

A
G

O
R

A

644 100.8 77.2 59.2 53.0 72.0
896 91.4 71.3 55.3 50.1 67.0

1288 82.2 64.9 52.4 48.2 61.9
448* 94.6 74.1 58.5 54.7 70.0
644* 84.6 68.5 57.3 52.7 65.5
896* 76.5 63.7 54.1 49.9 61.0

Table B3. Dataset comparisons. We report the number of instances
for different scale ranges on different datasets, as well as MVE
comparisons between our method (with “*”) and the baseline.

0-30% 30-50% 50-70% 70%+ Avg.

B
E

D
L

A
M Count 54041 36362 4586 1497 -

644* 55.6 56.0 57.6 63.1 56.0
644 65.1 61.0 58.4 64.6 63.3

3D
PW

Count 5121 10113 12299 7982 -
644* 86.2 74.2 70.5 70.2 73.7
644 93.6 77.8 68.7 68.3 74.8

0-10% 10-20% 20-30% 30%+ Avg.

A
G

O
R

A Count 1556 2976 1986 1274 -
644* 84.6 68.5 57.3 52.7 65.5
644 100.8 77.2 59.2 53.0 72.0

0-40% 40%+ Avg.

Pa
no

pt
ic Count 31592 11172 -

644* 85.2 81.0 84.2
644 90.0 82.6 88.2

resolution tokens, yielding similar performance. However,
further reducing TB brings no significant acceleration and
may result in a potential performance drop, as illustrated in
(c) and (e). These results demonstrate that our scale-adaptive
strategy achieves the best speed-accuracy trade-off, making
our method the best real-time model.

Effect of resolution. To study the impact of resolution,
we train our single-resolution baseline and our proposed
method with scale-adaptive tokens using different resolution

Table B4. Comparison of different scale thresholds on BED-
LAM [3] validation set. We report MVE for different scale ranges,
average (Avg.) MVE and inference runtime (ms).

αs
MVE ↓

Time (ms)
0-30% 30-50% 50-70% 70%+ Avg.

(a) 0.0 67.0 60.4 58.6 64.0 64.0 37.2
(b) 0.3 60.0 61.9 59.9 65.8 60.8 40.9
(c) 0.5
(Ours)

55.6 56.0 57.6 63.1 56.0 42.0

(d) 0.7 55.9 56.1 58.2 65.2 56.2 44.1
(e) 1.0 58.5 56.8 58.5 63.9 57.9 46.4

settings, reporting estimation errors (MVE) on AGORA [33]
validation set and BEDLAM [3] validation set in Tab. B2. As
input resolution increases, both single-resolution (baseline)
and mixed-resolution (our method, with “*”) settings show
accuracy improvements across individuals in different scale
ranges. Compared to the corresponding baseline, our method
greatly reduces the estimation error in small-scale instances.
These results further demonstrate the importance of higher
resolution, as it leads to better outcomes, and highlight the
effectiveness of our mixed-resolution strategy.

Scale distribution. We report the number of instances for
each scale range on AGORA [33] validation set, BEDLAM
[3] validation set, 3DPW [49] test set and CMU Panoptic
[15] test set in Tab. B3 (MuPoTS [29] is not included due to
the lack of bounding box annotations). To study the impact
of scale-adaptive tokens, we evaluate our method (644*,
mixed resolution) and the corresponding single-resolution
baseline (644) on these datasets. As shown, AGORA [33]
and BEDLAM [3] contain more small-scale instances, where
our method outperforms baseline with reduced MVE. This
improvement is also seen on small-scale instances in 3DPW
[49] and CMU Panoptic [15]. However, 3DPW’s larger-scale
instances show no improvement, likely due to the model’s
limited capability.

Scale threshold αs. To further study the impact of high-
resolution tokens, we conduct experiments on various scale
thresholds αs while retaining the pooling of background to-
kens. αs = 0 denotes that no high-resolution tokens are
used. Results are shown in Tab. B4. Compared to (a), our
method (c) achieves a consistent error reduction across dif-
ferent scale ranges, indicating that introducing sufficient
high-resolution tokens eases the estimation challenge on
small-scale instances and also allows the model to deal better
with large-scale instances. In (b), although the improvement
in the scale range of 0-30% is significant, the decrease in
high-resolution samples increases learning difficulty during
training and potentially leads to worse performance on larger-
scale instances than (a). (d) and (e) indicate that too large αs
decreases efficiency with longer interence time cost without



Figure B2. Additional visualization of scale-adaptive tokens TSA. We display the input, scale-adaptive tokens and the estimated mesh
overlay (top to bottom). Tokens are visualized the same way as Fig. 6. The first two columns are qualitative results on synthetic datasets
[3, 33], and the last two columns are on 3DPW [49].

Table B5. Accuracy and effect of scale prediction on BEDLAM
[3] validation set. We report F1-Score (F1) and Mean Absolute
Error (MAE) for evaluating scale map accuracy. To analyze its
impact on mesh estimation, we replace the predicted scale map
with GT and report MVE for different scale ranges and the average
(Avg.).

Scale
F1 ↑ MAE ↓ MVE ↓

map 0-30% 30-50% 50-70% 70%+ Avg.
Pred. 0.98 0.056 55.6 56.0 57.6 63.1 56.0
GT - - 55.4 55.8 58.6 63.2 55.8

improving accuracy. In (d), a large scale threshold ignores
plenty of background context since the high-resolution to-
kens are encoded independently for Nhr layers, leading to a
performance decline, which is consistent with our findings
in Sec. 4.4. In (e), when all humans are processed with high-
resolution tokens (i.e. αs = 1.0), training becomes unstable
and results are worse. In general, αs = 0.5 achieves the best
speed-accuracy trade-off.

Accuracy and effect of scale map prediction. We eval-
uate our scale map prediction in Tab. B5 which achieves
high prediction accuracy, with 0.98 F1-Score. To further
analyze its impact on the final mesh estimation, we replace
the predicted scale map with GT scale map during inference
time. The average MVE slightly improves, indicating our
scale predictions are accurate with minimal impact on accu-
racy. For scales over 50%, we find that the predicted scale
map outperforms GT due to underestimating scales in some
cases, assigning more instances of high-resolution tokens,
thus improving results.

B.2. Additional Qualitative Results
Scale-adaptive tokens. We present additional visualized
examples of our scale-adaptive tokens TSA in Fig. B2. The
last two cases include instances with scales near the scale
threshold αs, resulting in mixed-resolution token represen-
tations for those individuals. Nevertheless, our model still
produces satisfactory predictions, demonstrating the robust-
ness and consistency of the features learned across different
resolution levels.

SOTA comparisons. Fig. B3 and Fig. B4 present visual
comparisons between our method and existing SOTA ap-
proaches [2, 44–46] on synthetic images and real-world
images, respectively. Our method demonstrates a strong
generalization capability with accurate estimations across
different scenarios. Specifically, our method can accurately
estimate individuals across different scales, whereas other
methods may fail to detect very small individuals or produce
inaccurate estimations. See Fig. B4 for qualitative examples
illustrating this advantage.

Failure cases. Fig. B5 (top) indicates that our method can re-
sult in unsatisfactory depth reasoning without explicit height
or age awareness. Fig. B5 (bottom) shows poor mesh es-
timations on challenging scenes with heavy occlusion and
complex human poses, which also challenges existing SOTA
methods [2, 44].

B.3. Discussion
Multi-person 3D human mesh estimation is a fundamental
task with broad applications. With recent one-stage SOTA
methods [2, 44] achieving remarkable improvements in accu-
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Figure B3. Comparison on synthetic images. We compare our method with other SOTA methods [2, 44] on BEDLAM [3] (left) and
AGORA [33] (right). Red dashed circles highlight areas with 2D misalignment or misdetection. The last row shows the elevated view of our
estimations. Please zoom in for details.

racy, we further explore the potential of DETR-style pipeline
by leveraging scale-adaptive tokens to encode features more
efficiently. Our approach achieves superior performance
with significantly lower computational cost, marking a step
forward for real-time applications. With more diverse train-
ing data of high quality GTs, we may further enhance our
model’s robustness and generalization capability. Addition-
ally, our scale-adaptive tokens may be able to be plugged
into other DETR-style works to improve their efficiency in
the future.

Limitations. Since our method is not age- or height-aware,
it may produce larger depth estimation errors for children,
as shown in Fig. B5 (top). In the future, this issue could
be addressed by incorporating a mechanism to identify and
account for children. Also, we currently only support body-
only estimation. Since regions of human face and hands are
also challenging and require a higher resolution, our method
can be extended to full-body estimation in the future.
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Figure B4. Comparison on real-world images. We compare our method with SOTA methods [2, 44–46] on in-the-wild images from the
Internet. Our method outperforms all of them, especially in small-scale cases. Please zoom in for details.
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Figure B5. Failure cases. The top row shows an example of improper depth reasoning for the child. The bottom row shows poor estimation
results of current SOTA methods in complex human poses and scenarios.




