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A. Discussions

Discussion: Why temporal causal attention over bidi-
rectional temporal attention? We incorporate the tempo-
ral causal attention mechanism for three main reasons: 1)
Reducing noise interference: Subsequent video frames
often contain more noise and less information than pre-
ceding frames. When preceding frames engage in cross-
attention with subsequent frames, their information can be
corrupted by the noise contained in subsequent frames. 2)
Auto-Regressive flexibility: Temporal causal attention en-
ables models to behave similarly to an auto-regressive model,
which is well-suited for generating videos of variable lengths.
3) Potential for image integration: Temporal causal atten-
tion provides the capability to integrate image data as an
initial video frame in future training, allowing for exclusive
optimization of the starting frame.
Discussion: Why use x0 prediction instead of ϵ prediction
or v prediction? In many diffusion models, ϵ prediction [2]
and v prediction [4] losses are more frequently employed.
However, x0 prediction is crucial for AR-Diffusion to effec-
tively learn temporal correlations. In synchronous diffusion
models, video frames are uniformly corrupted with equal
timesteps, preserving most temporal correlations, allowing
the model to directly learn temporal relationships from the
input. In contrast, asynchronous diffusion disrupts these cor-
relations due to varying levels of corruption across frames,
making it challenging for AR-Diffusion to learn temporal de-
pendencies from the inputs alone. The use of x0 prediction
forces the model to generate outputs that maintain strong
temporal correlations across frames, leading to improved
video consistency.

B. Limitation

Despite the promising results achieved by our proposed AR-
Diffusion, there are several limitations that need to be ad-
dressed in future work. The primary limitation is that, while
our model leverages video data for training, there is potential
to further enhance its performance by incorporating image
data. Images, being more readily available and diverse, can
provide additional training signals that help improve the
visual quality and diversity of generated frames. Integrat-

Figure 1. Loss curve of Diffusion Forcing [1] on UCF-101.

Figure 2. Loss curve of AR-Diffusion (ours) on UCF-101.

ing image data into the training process could also help in
scenarios where video data is scarce or difficult to obtain.
Future research should explore methods to effectively com-
bine image and video data during training to further boost
the performance of AR-Diffusion.

C. Training Stability
Training stability is a critical aspect of machine learning
model performance. Stable training processes ensure con-
sistent learning and convergence to optimal solutions. This
paper explores the training stability of Diffusion Forcing [1]
and our AR-Diffusion by analyzing their training loss curves.
In particular, we visualize their training loss curves in Fig. 1
and Fig. 2, respectively. The training loss curves are plotted
over a series of training steps. For Diffusion Forcing, the
training loss decreases with noticeable fluctuations. These
fluctuations suggest some instability in the training process.
Significant spikes in the loss are observed around 40k and
80k steps, indicating moments of instability. Despite these
spikes, the overall trend shows a decrease in loss, suggesting
ongoing learning. For our AR-Diffusion, the training loss
decreases with fewer and less pronounced fluctuations. This
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Table 1. Ablation study on VAE using 4 A800 for 100 hours w/o
the fine-tune stage.

VAE Token Sample Taichi-HD Sky-Timelapse
Model Length Time FVDrec FVDgen FVDrec FVDgen

AR-VAE (ours) 16x32 3.1s 18.1 83.9 15.3 79.6
OpenSora-VAE-
v1.2

4x32x32 30.7s 41.2 785.4 11.3 643.8

suggests better stability in the training process compared to
Diffusion Forcing.

D. Reconstruction Performance

In this section, we qualitatively analyze the performance
of the Auto-Regressive Video Auto-Encoder (AR-VAE) on
reconstructing video frames across different datasets: Face-
Forensics, UCF-101, TaiChi-HD, and Sky-Timelapse. The
results are reported in Fig. 3. On the FaceForensics dataset,
the reconstructed frames closely resemble the real frames,
maintaining the overall structure and details of the scenes.
The colors and shapes are well-preserved, indicating that AR-
VAE effectively captures the essential features of the video
frames. On UCF-101, the AR-VAE demonstrates strong
performance in reconstructing dynamic actions, such as the
movements of the individuals in the video. The reconstructed
frames retain the motion and spatial details, ensuring tem-
poral consistency and clarity. On the TaiChi-HD dataset,
the reconstructed frames accurately reflect the subject move-
ments. The AR-VAE maintains the continuity and fluidity of
the actions, preserving the intricate details and background
elements. On Sky-Timelapse, the AR-VAE effectively recon-
structs the changing sky scenes, capturing the variations in
cloud formations and lighting conditions. The reconstructed
frames exhibit high fidelity to the real frames, maintaining
the temporal progression and visual consistency. Overall, the
AR-VAE shows impressive reconstruction capabilities across
different types of video content, preserving both spatial and
temporal features with high accuracy.

E. Ablation study on AR-VAE

We conduct ablation study on AR-VAE and report the results
in Table ??. FVDgen is obtained by training AR-Diffusion
with different VAEs. Inference time involves both genera-
tion and decoding processes. We train AR-Diffusion with
different VAE on 4 A800 GPUs for 100 hours. As reported
in Table 1, current SOTA VAE, i.e. Open-Sora-VAE, utilizes
8 times more tokens to represent a video than our AR-VAE,
resulting in a smaller batch size (2 vs 16), slower training
and infer speed, and much poorer generation performance.

Table 2. Sampling a F -frame video on an A800. * denotes 1282

reso.

Latte FIFO TATS VIDM Ours

Max Mem. 14.7GB 8.5GB 4.1GB 35.5GB 8.6GB
F=16 6.8s 595.8s 14.8s 115.9s 3.1s
F=128 52.0s 1639.8s 49.9s* 380.0s* 45.8s

F. Efficiency Comparison
As reported in Table 2, our method shows superior efficiency
compared to others. We use official codes&ckpts. Different
from reported in paper, here we include both generation and
decoding time.

G. Settings of Hyper Parameters
The detailed settings of model hyper parameters are pre-
sented in Table 3.

Table 3. Hyper-parameters of the AR-VAE and the DiT backbone
of AR-Diffusion.

AR-VAE

Token Length L 32
Token Dimension D 4
Model Width 1024
Num Layers 24
Num Heads 16
MLP Ratio 4.0

AR-Diffusion

Scale Factor 0.5
Hidden Size 1152
Depth 28
Num Heads 16
β Linear Start 0.0001
β Linear End 0.002
Num Timesteps 1000

H. Samples on Long Video Generation
In Fig. 4, we present the generated 128-frame long videos by
our AR-Diffusion on four diverse datasets: TaiChi-HD, Sky-
Timelapse, UCF-101, and FaceForensics. More displayable
samples can be found in https://anonymouss765.
github.io/AR-Diffusion. The qualitative results of
our AR-Diffusion model demonstrate its capability to gener-
ate visually realistic and temporally coherent video frames.
On the TaiChi-HD dataset, ehe generated frames exhibit
smooth and natural transitions, capturing the fluid motion
characteristic of Tai Chi exercises. The model maintains
the consistency of the subject’s movements and the back-
ground details, ensuring a coherent visual experience. On

https://anonymouss765.github.io/AR-Diffusion
https://anonymouss765.github.io/AR-Diffusion


(a) FaceForensics

(c) TaiChi-HD

(b) UCF-101

(d) Sky-Timelapse

Figure 3. Real (first row) and reconstructed (second row) video frames using our AR-VAE on the (a) FaceForensics [3], (b) UCF-101 [6], (c)
TaiChi-HD [5], and (d) Sky-Timelapse [7] datasets.

the Sky-Timelapse dataset, ehe model effectively synthe-
sizes the gradual changes in the sky, including cloud move-
ments and lighting variations. The temporal coherence is
well-preserved, with the transitions between frames appear-
ing seamless and natural. On the UCF-101 dataset, which
includes various human actions, the AR-Diffusion model
successfully generates frames that depict continuous and
realistic motion. The actions are rendered with high fidelity,
and the temporal progression of the activities is smooth and
coherent. On the FaceForensics dataset, the generated video
frames show the model’s ability to handle complex facial
movements and expressions. The transitions between frames
are smooth, and the facial details are consistently maintained,
demonstrating the model’s robustness in generating tempo-
rally coherent video sequences. Overall, the AR-Diffusion
model excels in producing high-quality video frames that are
both visually realistic and temporally coherent, outperform-
ing existing methods in handling diverse and challenging
video generation tasks.
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Figure 4. Generated 128-frame videos using our AR-Diffusion on four datasets. Each video is displayed with 4 skipped frames.
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